1. 项目背景与应用意义
电路板(PCB)作为现代电子设备的核心组成部分,其质量和可靠性直接影响整机性能。电路板生产过程中的元件检测(如电阻、电容等)是保证产品质量的重要环节。传统人工检测不仅耗时耗力,且容易出错。
随着工业自动化与智能制造发展,基于计算机视觉的自动检测方案成为行业新趋势。特别是结合深度学习的目标检测技术,能够实现高效、准确的元件识别和定位,助力生产线质量控制和异常分析。
本项目基于公开的FICS-PCB数据集,采用先进的YOLOv8模型,实现电阻、电容等关键元件的自动检测,配套设计实时UI界面,方便生产线集成与实地应用。
2. FICS-PCB数据集详解
2.1 数据集概述
FICS-PCB(Fully Integrated Circuit System PCB Dataset)是当前公开较为权威的电路板元件检测数据集,具有以下特点:
- 数据规模:约1万张高分辨率PCB图片
- 标注内容:包含多种常见电子元件,如电阻(resistor)、