OpenCV学习(81)

本文详细介绍了如何在OpenCV中利用FLANN进行特征点匹配,包括FlannBasedMatcher类的分析、DescriptorMatcher::match方法的使用,以及结合SURF和SIFT的关键点描述和匹配的示例程序。
摘要由CSDN通过智能技术生成

特征检测与匹配(3):使用FLANN进行特征点匹配

一,FlannBasedMatcher类的简单分析;

二,找到最佳匹配:DescriptorMatcher::match方法;

三,示例程序:使用FLANN进行特征点匹配;

四,综合示例程序:FLANN结合SURF进行关键点的描述和匹配;

五,综合示例程序:SIFT配合暴力匹配进行关键点描述和提取;

一,FlannBasedMatcher类的简单分析

在 OpenCV源代码中,找到FlannBasedMatcher类的脉络如下。
 

        可以发现 FlannBasedMatcher类也是继承自 DescriptorMatcher,并且同样主要使用来自 DescriptorMatcher类的match方法进行匹配。下面,让我们讲解一下此类方法的用法。

二,找到最佳匹配:DescriptorMatcher::match方法

       DescriptorMatcher:.match()函数从每个描述符查询集中找到最佳匹配,有两个版本的源码,下面用注释对其进行讲解。
 

 

三,示例程序:使用FLANN进行特征点匹配

#include<opencv2/opencv.hpp>
#include<iostream>
#include<opencv2/xfeatures2d.hpp>
#include<math.h>

using namespace cv;
using namespace std;
using namespace cv::xfeatures2d;

//检测计算和绘制时,源图(img1)在前面,目标图像(img2)在后面
Mat img1, img2;
int main(int argc, char** argv)
{
	img1 = imread("E:/pictures/2.jpg", 0);
	img2 = imread("E:/pictures/3.2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值