魔改YOLOv5/YOLOv7高阶版——改进之结合解耦头Decoupled_Detect

本文介绍了将解耦头部(Decoupled Head)应用于YOLOv5和YOLOv7的改进方法,通过这种方法,不仅提高了模型的精度,还加快了网络的收敛速度。文章提供了配置文件的修改指导,并分享了Swin Transformer等相关代码,帮助读者实现性能提升。此外,还提到了其他YOLO系列算法的改进思路,如结合不同网络结构、轻量化网络、注意力机制等,以助于读者进行目标检测算法的优化和创新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💖💖>>>加勒比海带,QQ2479200884<<<💖💖

🍀🍀>>>【YOLO魔法搭配&论文投稿咨询】<<<🍀

✨✨>>>

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加勒比海带66

清风徐来,水波不兴。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值