RSS 模型框架下的驾驶策略

RSS驾驶策略

RSS驾驶策略分为四种:策略(strategy)、战术(tactics)、路径规划(path planning)以及控制(control)。

策略表示“想变道”;

战术策略是一种“瞬间性”的决策,它会随着情况的变化而变化。也就是说已经决定了要变道,那么需要决定需要给哪辆车让道,要哪辆车给让道,这两辆车之间的距离就是变道行驶的距离。这种决策是实时变化的,比如已经决定了需要哪辆车给让道,但这辆车不给让道,那么如果还是坚持的想法,可能就会发生事故,所以改变了主意。

路径规划,它为执行战术策略而计划车辆行驶轨迹,这个轨迹必须是安全的。

最后是控制,已经计划好轨迹之后,就需要汽车进行控制,比如什么时候刹车。

安全距离

安全距离是指在最恶劣的情况下仍可以避免碰撞的距离。最恶劣的情况是指前车以最大刹车加速度开始刹车,后车发现后有一定的反应时间,并在反应时间内仍以最大加速度前进,然后改成以最小刹车加速度刹车,直到危险解除。因此,最小安全距离的计算公式如下:

 

参数:Vf 前车速度,Vr 后车速度,反应时间 ρ、最小刹车加速度 αmin,brake、最大刹车加速度 αmax,brake 以及最大加速度 αmax,accel

路权

多条道路交叉或汇合时就会涉及到路权。有些道路的优先级高于其他道路,在这些道路上行驶的汽车就拥有路权。RSS 模型涉及到部分场景的解决方法,后期仍然需要扩展模型,并对安全距离的计算进行必要调整。

为了更好地理解路权,我们需要先定义一个名词:纵向顺序(Longitudinal Ordering),用来代表距离交叉点的直线距离。如下图所示,左图中,在纵向顺序上红车在蓝车前面,因为 Dred < Dblue;右图反之。

和上文提到的公式化安全距离一样,我们同样可以定义多道路交叉时的纵向安全距离。如下图所示,红车拥有路权,优先级高,那么蓝车必须在进入路口前的安全距离内进行刹车,从而保证红车正常行驶。

 

 如前文所述,RSS 并不是刻板地以路权做为唯一判断,比如在下图中,蓝车来不及刹车闯入了红车的车道,红车也要采取刹车以避免碰撞。

 RSS 模型还可以支持轻微横向位移来避免撞击,如下图所示:

行人和遮挡

对于行人,首先需要明确行人的路线和优先级。某些地方行人的路线很明确,如人行道或者交叉路口的斑马线。这些地方自动驾驶汽车在自己车道上行驶时,一般无需担心行人会突然闯进来,车有优先权,但是也必须遵循灵活运用路权的原则。

但在有些地方,如居民区内,行人路线不明确,这时必须谨慎驾驶,给行人更高的优先权。考虑到人类的反应时间大概是 500ms,最大加速度是 2m/s²(博尔特的加速度是 3.09m/s²)。那么,根据之前的公式,车辆与行人之间的安全距离是 50cm,行驶时必须保证处于这个安全距离之外。

另外,需要格外注意有遮挡的环境。下图中的车辆正在通过一排停车位,一名儿童突然以速度 10km/h 的速度跑过来(比如在追球)。根据计算,10km/h 的速度必须要保持 15m 的安全距离才可能避免碰撞发生。但此时汽车侧方的视野只有 0.3m,显然无法满足安全要求。在这种情况下,RSS 模型做了如下定义:

  • 在车辆可以发现目标的第一时间(Te)到反应时间结束时(Te + ρ),车辆没有加速,且到发生撞击或者完全停下来的时刻(Ts),车辆一直以不低于αmin,brake的加速度在刹车;

  • 从 Te 到 Ts 这段时间内,车辆的平均速度低于行人的平均速度。

这种情况下车辆是没有责任的。这个定义隐含的论点是:在发生撞击的时刻,车辆的速度比行人的速度低,或者两者都移动得很慢,从而使撞击的伤害降到最低。

 语义描述

RSS 模型通过语义方式来描述测量结果、操作空间等,来指导无人驾驶汽车的规划、感知和动作。这种语义可以理解为我们学交规时的驾驶规范。例如,它不会做出这种描述:以当前速度开 13.7 米,然后以 0.8m/s² 的加速度加速前进,而是会发出语义指令,如“跟随前车”或者“从左侧超车”。

与人类驾驶类似,RSS 提供的这个语义模型,并不是加速度矢量的几何运算,而是关于纵向或者横向目标的描述。这对降低规划的运算复杂度(不会随着时间或邻车数量的增加而呈指数上升)、提升安全性和舒适性交互、以及传感器融合方面都至关重要。由于采用了语义模型,离线验证数据库只需要 10^5 量级的驾驶数据,就可以保证 RSS 模型达到死亡率 10^-9 次/小时的安全要求。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值