PP-LLaVA | 同时实现了Token压缩和指令感知视觉特征聚合

### Tiny-Llava 技术概述 Tiny-Llava 是一种轻量级的大规模语言视觉辅助模型,继承了 Power-LLaVA DeepSeek-VL 架构的优点。该模型旨在通过减少参数数量来优化性能,同时保持强大的多模态理解生成能力[^1]。 #### 主要特点 - **紧凑设计**:相比完整的大型模型,Tiny-Llava 减少了计算资源需求,更适合边缘设备部署。 - **高效训练**:采用先进的压缩技术迁移学习方法,在不影响效果的前提下缩短训练时间。 - **灵活应用**:支持多种输入形式(文本、图像),适用于广泛的任务场景如问答系统、聊天机器人等。 #### 安装指南 为了安装并运行 Tiny-Llava,需遵循以下步骤: 1. 创建虚拟环境并激活它; 2. 使用 pip 工具安装依赖库; 3. 下载预训练权重文件; 4. 加载模型实例准备推理。 ```bash # 创建 Python 虚拟环境 python -m venv tiny_llava_env source ./tiny_llava_env/bin/activate # Windows 用户应使用 `.\tiny_llava_env\Scripts\activate` # 更新 pip 并安装必要的包 pip install --upgrade pip pip install torch torchvision transformers datasets # 获取官方发布的最新版本权重 wget https://example.com/path/to/tiny_llava_weights.pth ``` #### 推理示例 下面是一个简单的 Python 代码片段展示如何加载已保存的 Tiny-Llava 模型来进行预测操作: ```python from transformers import AutoModelForVision2Seq, AutoProcessor processor = AutoProcessor.from_pretrained("path_to_processor_config") model = AutoModelForVision2Seq.from_pretrained("path_to_model") def predict(image_path, text_query): inputs = processor(images=image_path, text=text_query, return_tensors="pt") outputs = model.generate(**inputs) result = processor.decode(outputs[0], skip_special_tokens=True) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值