1.安装显卡驱动
ubuntu18.04, 显卡2060,CUDA 版本根据系统推荐
- 更新显卡信息,非常重要,否则可能识别出错
sudo update-pciids
- 查看显卡推荐驱动
ubuntu-drivers devices
(注意:先禁止系统自带显卡驱动nouveau)
通过指令lsmod | grep nouveau查看nouveau驱动的启用情况, 如果有输出表示nouveau驱动正在工作, 如果没有内容输出则表示已经禁用了nouveau
- 安装推荐驱动
sudo apt install nvidia-driver-470 reboot
- 选择驱动 (----》软件更新----》附加驱动)
2.cuda安装
-
选择推荐的CUDA版本
nvidia-smi
- 官网选择cuda对应版本
- 下载文件并安装
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo apt-get install libglfw3-dev
选择continue,通过键盘控制,回车确定
选择acccept
接着,如下图所示,在弹出的界面中通过Enter键,取消Driver和470.42.01的安装, 然后点击Install
系统安装CUDA包括两个部分:NVIDIA CUDA GPU计算工具包和NVIDIA CUD示例包两个部分。
如下图所示,Ubuntu20.04系统会默认地将CUDA的NVIDIA GPU计算工具包安装到/usr/local/文件夹下面,可以看到该文件夹下多了两个文件夹cuda和cuda-11.4。
sudo gedit ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
source ~/.bashrc
- 检查安装是否成功
sudo apt-get install libglfw3-dev
进入../NVIDIA_CUDA-11.0_Samples内,在该文件夹下打开终端,并输入make,等待。然后进入1_Utilities/deviceQuery文件夹,并在终端执行./deviceQuery命令,如下result=PASS则表示安装成功。
3.cuDNN安装
- 下载链接(要登录)
找到cuda对应版本
- 安装
然后,进入cudnn-XXXXXX,并右键->在终端打开使用下面两条指令
复制cuda文件夹下的文件 lib64 到 /usr/local/cuda-11.4/lib64/
复制cuda文件夹下的文件 linclude 到 /usr/local/cuda-11.4/include/
sudo cp cuda/lib64/* /usr/local/cuda-11.4/lib64/
sudo cp cuda/include/* /usr/local/cuda-11.4/include/
- 检查是否安装成功
cat /usr/local/cuda-11.4/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
出现下图为成功
- 检测功能是否正常
点击链接,下载对应文件
通过下面三条指令,cuDNN的测试文件会自动安装在系统的/usr/src/cudnn_samples_v8文件夹下,进入mnistCUDNN下,执行命令sudo make clean && make。如果结果如下图所示,则表示cuDNN安装成功。
sudo dpkg -i libcudnn8_8.2.4.15-1+cuda11.4_amd64.deb
sudo dpkg -i libcudnn8-dev_8.2.4.15-1+cuda11.4_amd64.deb
sudo dpkg -i libcudnn8-samples_8.2.4.15-1+cuda11.4_amd64.deb
查询
sudo dpkg -l | grep cudnn
sudo make clean && make
./mnistCUDNN
*CUDA的卸载
进入到/usr/local/cuda-11.4/bin目录下,而不是cuda目录。然后打开终端,输入sudo ./cuda-uninstaller。
sudo ./cuda-uninstaller
输入命令后,弹出如下界面,通过回车键选中三个选项,最后选中Done。执行完下面指令后,上面的cuda文件就删除了。
最后,在终端输入命令sudo rm -rf /usr/local/cuda-11.4,就可以最终卸载CUDA11.4和cuDNN v8.2.4了。
sudo rm -rf /usr/local/cuda-11.4
4.Anconda安装
- 网页手动下载
Download下载到本地(Anaconda会根据访问网页所使用的系统,推荐对应的Anaconda版本,用户无需担心版本错误。如果有特定版本需要的朋友,则可以根据需要自行下载对应版本的Anaconda)。
- 运行下载的文件
~/Downloads/Anaconda3-2021.11-Linux-x86_64.sh
在STEP1中已经执行了安装命令。指令执行结果首先让我们审阅安装协议,这里一直按
Enter直到出现 Do you accept the license terms? [yes|no] ,表示协议阅读完毕输入
yes即可继续安装,如下:
执行完STEP3Anaconda在Ubuntu系统里面的安装基本完毕了,但是还需要最后一步 初始化Anaconda,这一步只需要根据提示输入
yes即可,界面如下:
安装在当前用户目录下的情况只需要将Anconda3的安装地址添加进PATH即可。首先打开
~/.bashrc,然后在将
export PATH=$PATH:/home/USERNAME/anaconda3/bin添加到末尾,最后更新一下
~/.bashrc。依次执行下面代码。
sudo gedit ~/.bashrc
export PATH=$PATH:/home/USERNAME/anaconda3/bin
source ~/.bashrc
- 验证与配置新环境
Acnconda添加国内镜像源,重新打开一个终端,执行下面命令
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
执行下面命令
conda config --set auto_activate_base false
当然这一条命令执行完毕后,想要再次进入conda的base环境,
只需要使用对应的conda指令即可,如下:
conda activate base
conda create -n labelimg python=3.8
通过labelimg,可以对数据集进行标注。
5.yolov8安装
- 创建yolov8环境
conda create -n yolov8 python=3.9
- 激活环境
conda activate yolov8
- 安装pytorch
根据cuda版本和需求在官网进行选择,可以是GPU版本,也可以是CPU版本
这里我的cuda版本为11.4,可以向下兼容,选择11.3的版本安装
- 下载yolov8原码
git clone https://github.com/ultralytics/ultralytics.git
- 将yolo格式的数据集放到ultralytics目录下,在./cfg/dataset中添加数据集配置文件
- 在ultralytics目录下创建train.py文件进行验证
from ultralytics import YOLO
# Load a model
#yolov8s
#model = YOLO("yolov8s.yaml")
# Train the model
results = model.train(data="ultralytics/cfg/datasets/mydata.yaml", epochs=200, imgsz=640)
- 在yolov8环境下的终端执行python train.py命令
python train.py
报错缺少哪个库就pip install 安装。
如果pip install下载较慢,使用下面命令可以加快下载速度
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple package_name
如果是numpy报错,重现安装1.26.4版本的numpy
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==1.26.4