Ubuntu安装深度学习环境相关(yolov8-python部署)

本文详述了在Ubuntu系统上安装深度学习环境(包括RTX3050显卡驱动和Yolov8Python部署),以及如何通过Anaconda创建和激活虚拟环境进行模型测试的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ubuntu安装深度学习环境相关(yolov8-python部署)

  • 本文将从如下几个方面总结相关的工作过程:

    • 1.Ubuntu系统安装(联想小新pro16)
    • 2.显卡驱动安装
    • 3.测试深度学习模型

1. Ubunut 系统安装

  • 之前在台式机上安装过Ubuntu,以为再在笔记本上安装会是小菜一碟,但没想还是废了一些功夫。

  • 安装所需要的步骤:

    • 1.电脑分盘:Windows下右键开始,选择磁盘管理,我的是在F盘分出了80G
    • 2.在- 官网 -下载Ubuntu系统并通过U盘制作启动盘:
      在这里插入图片描述
    • - rufus -下载启动盘制作工具:
      在这里插入图片描述
    • 点击开始进行制作 在这里插入图片描述
    • 我的电脑是联想小新,按下开机建后,同时连续多次按Fn+F2,进入BIOS界面,将Secure Boot关闭,保存更改退出,关机重启
    • 插入U盘启动盘,按下开机键,连续按下F12,选择U盘对应的系统进行安装,选择中文语言,正常下一步,常规安装至结束,中间正常设置账户密码等。
  • 设置中也可以设置输入法:
    在这里插入图片描述

  • 如果桌面字体太小可以通过改变分辨率进行调整:
    在这里插入图片描述- 打开软件与更新设置国内源
    在这里插入图片描述

  • 如果系统安装过程最后提示磁盘没有访问权限,需要解密,则需要回到windows下对磁盘进行解密,即通过命令行关闭Bitlocker

  • cmd中输入以下命令关闭

     manage-bde -off C:
    
  • 但是有时候出现如下提示:
    在这里插入图片描述

此时需要先执行如下命令:(系统分区不是C的话更改下面的盘符)

manage-bde -autounlock -ClearAllKeys c:

然后再执行即可

manage-bde -off C:

提示解密进行中,需要一定的时间:
在这里插入图片描述

解密后所在分区就没有锁子图标了
在这里插入图片描述

2.显卡驱动安装

  • 我的显卡是RTX3050,但是我根据网上的一些信息通过软件与更新或者 sudo apt 命令进行下载驱动程序都提示连接不上NVIDIA,后来查了一下说需要先禁用系统自带的驱动程序 Nouveau
  • 查看是否安装NVIDIA驱动命令:
nvidia-smi

在这里插入图片描述在这里插入图片描述

2.1 禁用 nouveau

  • a. 运行如下指令,查看系统是否启用了nouveau显卡驱动
lsmod | grep nouveau

如果有内容输出,则说明nouveau已被启用,需要执行后续从b.开始的步骤以将nouveau禁用;如果没有内容输出,则可以直接安装nvidia驱动。

  • b. 修改blacklist.conf配置

blacklist.conf文件的位置:

/etc/modprobe.d/blacklist.conf

不管是通过vi、vim,还是直接修改,选择一种即可,本文采用直接修改的方法进行后续步骤。

Ctrl+Alt+T打开一个新的命令行窗口,通过如下指令切换到blacklist.conf文件所在的目录:

cd ../../etc/modprobe.d 

.conf文件的修改需要管理员权限,需要sudo,通过执行如下指令直接对记事本文件进行修改:

sudo gedit blacklist.conf 

在该文件最后插入以下两行内容:

blacklist nouveau
options nouveau modeset=0

最终效果如图所示:
在这里插入图片描述保存并关闭该文件。

  • c. 更新系统

通过如下命令更新系统,使刚刚修改的文件生效:

sudo update-initramfs -u
  • d. 重启系统

重新启动系统,可以通过图形界面直接重启,也可以通过命令行重启。本文通过命令行重新启动,在任意命令行中输入如下命令:

reboot

等待系统重启完成。

  • e. 验证nouveau是否已禁用

再次通过如下命令,查看是否有输出:

lsmod | grep nouveau

此时,命令行输出为空,如下图所示。

说明nouveau显卡驱动已被禁用,此时可以安装nvidia显卡驱动。

2.2 安装NVIDIA驱动

chmod +x NVIDIA-Linux-x86_64-535.54.03.run
  • 通过如下命令运行下载好的.run文件:
sudo ./NVIDIA-Linux-x86_64-535.54.03.run

注意

“./”后的文件名需要换成在Step 1中根据自己电脑下载的驱动的名称!

安装过程中提示的东西全部安装即可!

遇到的小问题
报错“you appear to be running an x server; please exit x before installing.”

解决方法:在运行命令后加上 --no-x-check

加上之后的命令最终为:

sudo ./NVIDIAxxxx.run --no-x-check
  • 最后执行以下命令看是否安装成功:
nvidia-smi

在这里插入图片描述

3.测试深度学习模型

3.1 安装anaconda

bash Anaconda3-2022.05-Linux-x86_64.sh

在这里插入图片描述

3.2 搭建虚拟环境

#新建虚拟环境
conda create yolov8 python=3.8
pip install ultralytics

#激活虚拟环境
conda activate yolov8

#推理:
yolo predict model=yolov8n.pt source=./ultralytics/assets/bus.jpg

在这里插入图片描述
搞定:
在这里插入图片描述

参考:

1. 联想win10安装ubuntu20.04双系统
2.通过命令行关闭Bitlocker
3.Ubuntu安装Nvidia显卡驱动
4.Ubuntu安装Anaconda详细步骤

### YOLOv5 实时目标检测系统的安装与配置 #### 准备工作 确保已准备好运行 Ubuntu 的设备,推荐使用至少 16GB 存储空间的 SD 卡完成系统部署,并连接至稳定的 Wi-Fi 网络(优先选用 2.4 GHz 频段)[^1]。 #### 更新系统软件包 通过终端执行以下命令刷新本地仓库索引并升级现有程序: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 这一步骤有助于减少后续可能出现的兼容性问题以及安全风险。 #### 安装必要的依赖项 为支持 PyTorch 和其他机器学习库正常运作,需预先加载若干基础工具链: ```bash sudo apt-get install git python3-pip libgl1-mesa-glx -y pip3 install wheel opencv-python numpy ``` 上述指令集成了 Git 版本控制系统用于克隆远程存储库;`libgl1-mesa-glx` 是图形渲染所需的支持库;而 Python 相关模块则是构建深度学习框架不可或缺的部分[^4]。 #### 获取 YOLOv5 源码 利用 Git 将官方发布的最新版 YOLOv5 下载到本地目录内: ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5/ ``` 此操作会创建一个新的文件夹 `yolov5` 并从中获取完整的项目结构及其配套资源文件。 #### 构建环境变量 针对特定硬件平台优化模型推理速度前,应先确认当前环境中是否已经存在有效的 CUDA 及 cuDNN 支持。对于不具备 GPU 加速能力的目标端而言,则无需特别关注这部分设置[^3]。 如果计划采用 TensorRT 进行进一步提速处理,可参照 NVIDIA 提供的相关文档指南进行额外组件的引入和集成。 #### 测试验证 最后,在一切就绪之后可以通过如下方式启动测试实例检验整个流程是否顺畅无误: ```python from pathlib import Path import torch from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) weights = 'yolov5s.pt' # 权重路径 source = 'data/images/bus.jpg' # 输入图像或视频源 imgsz=(640, 640) # 推理尺寸大小 conf_thres=0.25 # 置信度阈值 iou_thres=0.45 # NMS IOU 阈值 device='cpu' # 使用 CPU 或者 cuda:0 表示第一个可用 GPU model = DetectMultiBackend(weights, device=device) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # 根据步幅调整图片分辨率 dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) for path, im, im0s, vid_cap, s in dataset: im = torch.from_numpy(im).to(device) im = im.float() / 255. if len(im.shape) == 3: im = im[None] pred = model(im, augment=False, visualize=False) det = non_max_suppression(pred, conf_thres, iou_thres)[0] if len(det): det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0s.shape).round() for *xyxy, conf, cls in reversed(det): label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0s, label=label, color=[random.randint(0, 255) for _ in range(3)], line_thickness=3) cv2.imshow('YOLOv5', im0s) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段脚本展示了如何加载预训练权重、读取待测样本数据并对预测结果可视化展示的过程。注意这里仅作为演示用途,请根据实际应用场景灵活调整参数选项。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月醉窗台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值