✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代社会,外卖行业的发展迅猛。越来越多的人选择在家里点外卖,享受便利的同时也给外卖配送带来了巨大的挑战。外卖配送路径规划问题(Vehicle Routing Problem,简称VRP)是一个经典的组合优化问题,旨在通过合理的路径规划和调度,使得配送员能够在最短的时间内完成所有配送任务,减少行驶距离和成本。
VRP问题的复杂性在于需要考虑多个因素,如配送员的工作时间窗口、配送地点之间的距离、交通拥堵情况等。传统的解决方法往往采用启发式算法,如贪婪算法、模拟退火算法等,但这些方法往往无法找到全局最优解,且计算时间较长。
为了解决这个问题,本研究基于改进遗传算法来优化外卖配送路径规划。遗传算法是一种模拟自然界进化过程的优化算法,通过模拟遗传、交叉和变异等操作,不断优化解的质量。本文提出的改进遗传算法结合了路径优化和调度优化两个环节,以提高配送效率和降低成本。
首先,我们将配送员的路径规划问题转化为一个优化问题,即如何找到一组最佳的路径。为了实现这一目标,我们使用了基于遗传算法的路径优化模块。该模块通过遗传算法的选择、交叉和变异等操作,不断生成和优化路径解,并通过评估函数对解的质量进行评估。通过迭代优化,我们可以得到最佳的路径解。
其次,我们考虑了配送员的调度问题。在实际情况中,配送员的工作时间窗口和配送地点之间的距离等因素都会影响配送效率。为了解决这个问题,我们引入了基于遗传算法的调度优化模块。该模块通过遗传算法的选择、交叉和变异等操作,不断生成和优化调度方案,并通过评估函数对解的质量进行评估。通过迭代优化,我们可以得到最佳的调度解。
最后,我们将路径优化和调度优化两个模块进行整合,形成了基于改进遗传算法的外卖配送路径规划优化模型。通过该模型,我们可以在最短的时间内完成所有配送任务,减少行驶距离和成本,提高配送效率。
在实验中,我们使用了真实的外卖配送数据进行验证。结果表明,基于改进遗传算法的优化模型相比传统方法具有更好的性能。它能够在较短的时间内找到全局最优解,并且具有较高的配送效率和较低的成本。
综上所述,本研究基于改进遗传算法实现了外卖配送路径规划优化。通过路径优化和调度优化两个环节的结合,我们可以在最短的时间内完成所有配送任务,减少行驶距离和成本,提高配送效率。未来的研究可以进一步探索其他优化算法和技术,以进一步提升外卖配送的效率和质量。
📣 部分代码
%子程序4:新种群变异操作,函数名称存储为mutation.m
function snnew=mutation(Scnew,Pm,P0);%一下输入一个子群和变异概率
[m,n]=size(P0);;%子群位长
snnew=Scnew;%%变异后的子群
pmm=IfCroIfMut(Pm); %根据变异概率决定是否进行变异操作,1则是,0则否,类似交叉 %子程序7
if pmm==1
chb1=round(rand*(m-2))+1; %在[1,59]范围内随机产生一个变异位
chb2=round(rand*(m-2))+1; %在[1,59]范围内随机产生一个变异位
%交换两个变异位
mm=snnew(chb1);
snnew(chb1)=snnew(chb2);%交换
snnew(chb2)=mm;
end
end
⛳️ 运行结果
🔗 参考文献
[1] 严秀.基于改进遗传算法的VRP问题研究[D].安徽大学[2023-10-17].DOI:10.7666/d.d157911.
[2] 王迪,金辉,靳泽宇,等.基于改进遗传算法的校园食堂外卖配送路径优化研究[J].辽宁工业大学学报:自然科学版, 2020, 40(1):6.DOI:10.15916/j.issn1674-3261.2019.01.011.
[3] 李仁安,袁际军.基于改进遗传算法的物流配送路线优化研究[J].武汉理工大学学报, 2004, 26(12):3.DOI:JournalArticle/5aee7ac6c095d710d415716a.
[4] 范立南吕鹏.基于改进遗传算法的校园外卖配送路径规划[J].物流科技, 2021, 044(001):14-19.