【光伏预测】基于混沌博弈优化算法CGO优化高斯过程回归GPR实现光伏多输入单输出预测附Matlab代码

   ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

摘要

光伏发电作为一种清洁能源,近年来发展迅速。精确预测光伏发电量对于电网调度、能源管理和电力市场交易至关重要。本文提出一种基于混沌博弈优化算法(CGO)优化高斯过程回归(GPR)模型,用于实现光伏多输入单输出预测。该模型利用CGO算法对GPR模型中的超参数进行优化,提高模型的预测精度和泛化能力。通过在真实光伏发电数据集上的实验验证,该模型表现出优于传统GPR模型和支持向量机模型的预测性能。

1. 引言

随着全球能源需求的不断增长和环境污染问题的日益突出,光伏发电作为一种清洁可再生能源,越来越受到重视。光伏发电的功率输出受到多种因素的影响,如日照强度、气温、云层覆盖率等。准确预测光伏发电量对电网调度、能源管理和电力市场交易都具有重要意义。

目前,常用的光伏发电量预测方法主要包括传统统计模型、机器学习模型和深度学习模型。其中,高斯过程回归(GPR)模型作为一种非参数模型,在处理非线性问题时具有优势,并且能够提供预测的不确定性度量,在光伏预测领域得到了广泛应用。然而,传统的GPR模型对超参数的选择较为敏感,容易出现过拟合或欠拟合的问题,影响预测精度。

针对这一问题,本文提出一种基于混沌博弈优化算法(CGO)优化GPR模型的光伏多输入单输出预测方法。CGO算法是一种新型的智能优化算法,具有良好的全局搜索能力和收敛速度,能够有效地解决GPR模型超参数的优化问题。

2. 模型介绍

2.1 高斯过程回归(GPR)模型

GPR模型是一种基于概率论的非参数模型,它将函数视为一个高斯过程,并利用训练数据学习该过程的先验分布,进而实现对未知数据的预测。GPR模型的关键在于定义一个协方差函数(也称为核函数),用来刻画数据之间的相关性。

假设训练数据为{(x_i, y_i)},其中 x_i 为输入向量,y_i 为输出值。GPR模型的预测值可以表示为:

 

f(x*) = f(x) + ΣΣk(x, x') * β(x, x')

其中,x 为预测点的输入向量,x' 为训练数据中的输入向量,k(x, x') 为协方差函数,β(x, x') 为权重矩阵。

2.2 混沌博弈优化算法(CGO)

CGO算法是一种基于混沌理论和博弈论的智能优化算法。它利用混沌映射的随机性,打破传统优化算法的局部搜索陷阱,提高全局搜索能力。同时,它引入博弈机制,模拟多个智能体之间的竞争与合作,以求解最优解。

2.3 优化GPR模型

本文利用CGO算法对GPR模型中的超参数进行优化。CGO算法的优化目标是找到一组超参数,使得GPR模型的预测误差最小。具体来说,CGO算法在GPR模型的训练过程中不断更新超参数,并通过交叉验证评估模型的性能,最终找到最佳的超参数组合。

结论

本文提出了一种基于CGO算法优化GPR模型的光伏多输入单输出预测方法。该方法通过利用CGO算法的全局搜索能力和GPR模型的非参数优势,有效地提高了光伏发电量预测的精度。实验结果表明,该模型在真实数据集上具有较好的预测性能,为光伏发电的智能调度和管理提供了新的思路和方法。

未来展望

未来,我们将进一步研究以下几个方向:

  • 探索更有效的超参数优化算法,进一步提高模型的预测精度。
  • 将深度学习技术引入光伏预测模型,提高模型的非线性拟合能力。
  • 研究光伏发电量预测的动态特性,开发更具鲁棒性的预测模型。

总之,基于CGO算法优化GPR模型的光伏多输入单输出预测方法具有广阔的应用前景,将在未来光伏发电的智能化发展中发挥重要作用。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
根据提供的引用内容,混沌博弈优化算法是一种基于混沌理论和博弈论的优化算法。虽然提供的引用中给出了MATLAB代码,但是我们同样可以使用Python实现算法。以下是一个简的Python实现示例: ```python import numpy as np # 定义目标函数 def obj_func(x): return x[0]**2 + x[1]**2 # 定义混沌映射函数 def chaos_map(x0, a=6): return a * x0 * (1 - x0) # 定义混沌博弈优化算法 def CGO(obj_func, dim=2, max_iter=100, pop_size=50, a=6): # 初始化种群 pop = np.random.rand(pop_size, dim) # 初始化个体最优解和全局最优解 p_best = pop.copy() g_best = p_best[obj_func(p_best).argmin()].copy() # 迭代寻优 for i in range(max_iter): # 计算混沌映射值 x0 = chaos_map(pop[:, 0], a=a) # 计算新的种群 pop_new = np.zeros_like(pop) for j in range(dim): # 计算混沌映射值 x0 = chaos_map(x0, a=a) # 计算新的种群 pop_new[:, j] = (1 - x0) * pop[:, j] + x0 * g_best[j] # 更新个体最优解和全局最优解 p_best_mask = obj_func(pop_new) < obj_func(p_best) p_best[p_best_mask] = pop_new[p_best_mask] g_best_mask = obj_func(p_best) < obj_func(g_best) g_best = p_best[g_best_mask][0].copy() return g_best, obj_func(g_best) # 测试 if __name__ == '__main__': g_best, obj_val = CGO(obj_func) print('最优解:', g_best) print('最优目标函数值:', obj_val) ``` 该示例中,我们首先定义了目标函数`obj_func`,然后定义了混沌映射函数`chaos_map`,最后定义了混沌博弈优化算法`CGO`。在`CGO`函数中,我们首先初始化种群,然后迭代寻优,每次迭代中都会计算混沌映射值,并根据混沌映射值计算新的种群。在更新个体最优解和全局最优解时,我们使用了布尔掩码来筛选出更优的解。最后,我们在`if __name__ == '__main__'`中测试了该算法,并输出了最优解和最优目标函数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值