【目标融合】基于扩展卡尔曼滤波器的车辆定位多传感器融合算法Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 车辆精确定位是自动驾驶、高级驾驶辅助系统(ADAS)等领域的核心技术。单一传感器存在局限性,例如GPS易受遮挡影响,IMU易受累积误差影响,而超声波、激光雷达等传感器则各有优缺点。多传感器融合技术能够有效整合不同传感器的信息,提高定位精度和鲁棒性。本文重点研究基于扩展卡尔曼滤波器(Extended Kalman Filter, EKF)的车辆定位多传感器融合算法,探讨其在不同传感器组合下的实现方法,并分析其性能优劣及改进方向。

关键词: 车辆定位;多传感器融合;扩展卡尔曼滤波器;状态估计;传感器融合

1. 引言

随着自动驾驶技术的飞速发展,对车辆定位精度的要求越来越高。传统的单一传感器定位方法难以满足高精度、高可靠性的需求。例如,全球导航卫星系统(GNSS)易受遮挡、多路径效应和大气干扰的影响;惯性测量单元(IMU)存在累积误差,长时间运行精度下降;超声波传感器和激光雷达的测量范围和精度也存在限制。为了克服单一传感器技术的不足,多传感器融合技术应运而生。多传感器融合通过融合来自不同传感器的数据,利用各个传感器的优势,弥补其不足,从而获得更准确、更可靠的车辆定位信息。

扩展卡尔曼滤波器(EKF)作为一种经典的非线性滤波算法,广泛应用于多传感器融合领域。它能够处理非线性系统和非高斯噪声,并具有较好的实时性,因此成为车辆定位多传感器融合算法中一种常用的方法。本文将深入探讨基于EKF的车辆定位多传感器融合算法,分析其在不同传感器组合下的实现原理、性能特点以及改进方向。

2. 系统模型及状态方程

在车辆定位系统中,通常选择车辆状态向量 x 来表示车辆的位姿和速度信息。 x 可以定义为:

x = [x, y, θ, v, ω]<sup>T</sup>

其中,(x, y) 表示车辆在笛卡尔坐标系下的位置坐标,θ 表示车辆航向角,v 表示车辆速度,ω 表示车辆角速度。

系统的状态方程描述了车辆状态随时间的变化规律,通常采用非线性模型来描述车辆运动学:

x<sub>k+1</sub> = f(x<sub>k</sub>, u<sub>k</sub>, w<sub>k</sub>)

其中,k 表示时间步长,u<sub>k</sub> 表示控制输入(例如,油门踏板和方向盘转角),w<sub>k</sub> 表示过程噪声,通常假设服从高斯分布。 f(.) 函数表示车辆的运动学模型,例如自行车模型或阿克曼转向模型。

3. 测量模型及观测方程

不同的传感器提供不同的观测信息。例如:

  • GNSS: 提供车辆的经纬度坐标 (x<sub>GNSS</sub>, y<sub>GNSS</sub>)。

  • IMU: 提供车辆的加速度和角速度信息,通过积分可以得到速度和位姿信息。

  • 激光雷达: 提供车辆周围环境的点云数据,通过点云匹配等算法可以获得车辆的位姿信息。

  • 超声波传感器: 提供车辆与障碍物之间的距离信息。

观测方程描述了传感器观测值与车辆状态之间的关系:

z<sub>k</sub> = h(x<sub>k</sub>, v<sub>k</sub>)

其中,z<sub>k</sub> 表示传感器观测值,v<sub>k</sub> 表示测量噪声,通常假设服从高斯分布。 h(.) 函数表示传感器测量模型,不同传感器对应不同的 h(.) 函数。

4. 扩展卡尔曼滤波器算法

EKF算法通过对非线性系统进行线性化处理,近似地实现卡尔曼滤波。其核心步骤包括:

  • 预测步骤: 根据状态方程预测下一时刻的状态估计值和协方差矩阵。 这需要对状态方程进行线性化,计算雅可比矩阵。

  • 更新步骤: 将传感器观测值与预测值进行融合,更新状态估计值和协方差矩阵。 这同样需要对观测方程进行线性化,计算雅可比矩阵。

具体公式较为复杂,此处不再赘述,可参考相关文献。

5. 不同传感器组合下的EKF实现

基于EKF的多传感器融合算法可以根据实际需求选择不同的传感器组合。例如:

  • GNSS/IMU融合: 利用GNSS提供的位置信息,IMU提供速度和航向信息,可以有效提高定位精度和鲁棒性。IMU数据可以有效补偿GNSS信号中断的情况。

  • GNSS/IMU/激光雷达融合: 激光雷达提供高精度的局部地图信息,可以进一步提高定位精度,尤其在GNSS信号弱或遮挡的情况下。

  • GNSS/IMU/超声波融合: 超声波传感器可以提供车辆与障碍物之间的距离信息,辅助车辆定位,特别是在狭窄环境中。

不同的传感器组合需要设计不同的状态向量、状态方程和观测方程。

6. 算法性能分析及改进方向

EKF算法的性能受多种因素影响,例如系统模型的精度、噪声特性、线性化精度等。其主要缺点包括:

  • 线性化误差: EKF算法依赖于线性化假设,当非线性程度较高时,线性化误差会显著影响算法精度。

  • 计算复杂度: EKF算法需要计算雅可比矩阵,计算量较大,尤其是在高维状态空间的情况下。

为了改进EKF算法的性能,可以考虑以下方法:

  • 改进系统模型: 采用更精确的车辆运动学模型,例如考虑轮胎打滑等因素。

  • 采用更高级的滤波算法: 例如无迹卡尔曼滤波器(UKF)或粒子滤波器(PF),能够更好地处理非线性系统。

  • 数据预处理: 对传感器数据进行预处理,例如噪声滤波、异常值剔除等,可以提高算法的鲁棒性。

7. 结论

本文探讨了基于EKF的车辆定位多传感器融合算法。EKF算法凭借其相对简单的实现和较好的实时性,成为车辆定位多传感器融合领域的一种常用方法。然而,其线性化误差和计算复杂度是其主要缺点。未来的研究方向可以集中在改进系统模型、采用更高级的滤波算法以及优化算法实现等方面,以提高车辆定位的精度和鲁棒性,为自动驾驶和ADAS等应用提供更可靠的定位信息。 进一步的研究可以考虑将深度学习技术与EKF算法相结合,以提高算法的适应性和智能性。

📣 部分代码

sition_selector = [1 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 1 0]; % Position from state

%true_position = position_selector * true_state;

true_position = [true_state(1,:);true_state(4,:);true_state(7,:)];

%true_position=true_state;

measurement_noise = randn(size(true_position));

measurement_position = true_position + measurement_noise;

initial_state = position_selector' * measurement_position(:,1); %First state data from measurement

initial_covariance = diag([1,1e4,1,1e4,1,1e4]); % Velocity is not measured

cvekf = trackingEKF(@constvel, @cvmeas, initial_state, ...

    'StateTransitionJacobianFcn', @constveljac, ...

    'MeasurementJacobianFcn', @cvmeasjac, ...

    'StateCovariance', initial_covariance, ...

    'HasAdditiveProcessNoise',

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 使用MATLAB实现扩展卡尔曼滤波器进行定位融合 #### 扩展卡尔曼滤波器简介 扩展卡尔曼滤波器EKF)是一种非线性系统的状态估计方法,广泛应用于传感器融合领域。对于非线性的动态系统,EKF通过对预测和更新阶段的状态方程进行一阶泰勒展开近似处理,从而实现了对复杂系统的有效跟踪[^1]。 #### 定位融合中的应用 在实际应用场景中,特别是涉及移动物体的位置追踪时,通常会采用多种类型的传感器数据来进行综合判断。比如,在无人驾驶车辆导航过程中,可能会同时利用GPS接收机获取全球坐标信息,并借助惯性测量单元(IMU)感知加速度变化情况;而在室内环境中,则更多依赖于超宽带(UWB)[^2]等短距离高精度测距技术。为了提高最终输出坐标的准确性和平滑度,就需要引入像EKF这样的高级算法来完成多源异构传感信号之间的最优组合运算。 #### MATLAB代码示例 下面是一个简单的例子,展示了如何使用MATLAB编写程序以实现基于IMU与GPS数据的二维平面内目标位置估算: ```matlab function [X,P]=ekf_predict(X,P,F,Q) % 预测过程函数定义 X=F*X; % 状态转移矩阵作用下的新状态向量预估值 P=F*P*F'+Q; % 更新协方差阵至下一时刻预期值 end function [Zhat,H]=h_func(x) % 测量模型函数定义 Zhat=[x(1); x(2)]; % 假设观测到的是真实位置的第一二分量 H=eye(size(Zhat)); % 对角化雅可比矩阵表示局部线性关系 end clear all; clc; %% 参数初始化部分 dt=0.1;% 时间间隔设定为十分之一秒 n=4;% 总共有四个状态变量:两个位置分量加上对应的瞬时速度大小 m=2;% 只能直接观察到前两维即地理位置的信息 I_n=eye(n); I_m=eye(m); %% 构建离散时间运动学模型及其噪声统计特性描述 A=[1 dt 0 0 ;... 0 1 0 0 ;... 0 0 1 dt ;... 0 0 0 1 ];% 运动学状态转换矩阵构建 B=zeros(n,2); C=A(:,[1:m]); D=B([1:m],:); sys=ss(A,B,C,D,-1,'StateName',{'px','vx','py','vy'}); [num,den]=tfdata(sys,'v'); G=sqrt(den{1}(end))*randn(length(num),1);% 加入随机扰动项模拟现实世界不确定性影响 Q=G*G'; R=diag([std(GaussianNoise)^2,std(GaussianNoise)^2]); %% 初始化先验分布均值向量及协方差矩阵 mu_0=[initialPosition_x initialVelocity_x ... initialPosition_y initialVelocity_y]'; Sigma_0=blkdiag(var(initialPosDist)^2*I_m,var(initVelDist)^2*I_m); %% 开始迭代循环求解最优化路径轨迹序列 for k=1:length(measurements)-1 %% 获取当前时刻k处的实际测量结果作为输入条件 z_k=measurements{k}; %% 调用预测子模块得到下一步可能达到的新状况评估指标 [~,~,F]=linmod('motion_model'); mu_pred(k)=ekf_predict(mu_(k-1), Sigma_(k-1), F, Q); %% 计算残差e_k以及相应增益K_k数值大小 e_k=z_k-h_func(mu_pred(k)); [~,H]=h_func(mu_pred(k)); S_k=H'*inv(R)*H+inv(Sigma_pred(k)); K_k=(S_k\H')'; %% 利用上述所得参数修正原先猜测出来的中间产物形成更加贴近事实真相的最佳估计版本 mu_hat(k)=mu_pred(k)+K_k*e_k; Sigma_hat(k)=(I_n-K_k*H)*Sigma_pred(k)*(I_n-K_k*H)' + K_k*R*K_k'; end ``` 此段脚本主要分为几个关键环节: - **参数配置**:设置了采样周期`dt`, 维度数目 `n` 和可观测维度数量 `m`. - **建立动力学模型**:创建了一个四元组形式的动力学表达方式,其中包含了位置(`p`)和速度(`v`)两个方面. - **初始概率密度赋值**:给定了起始状态下各物理量的具体取值范围并据此分配了合理的不确定程度衡量标准——协方差矩阵. - **核心逻辑执行**:按照预定的时间步长顺序遍历整个历史记录集,依次调用了预测、校正两大步骤完成了每一轮次内的最优估计操作.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值