✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着光伏发电在配电网中渗透率的不断提高,其输出功率的波动性对电网电压稳定性和网损带来了显著影响。本文提出一种基于小生境粒子群优化算法(Niche Particle Swarm Optimization, NPSO)的主动配电网有功无功协调优化模型,通过考虑光伏出力的概率分布特性,建立多目标优化模型,同时优化分布式电源有功出力、无功补偿装置容量以及有载调压变压器分接头位置。通过引入小生境技术,有效避免了传统粒子群算法的早熟收敛问题,提高了算法的全局搜索能力。实验结果表明,与传统优化方法相比,所提方法能够显著降低系统网损,改善节点电压分布,增强配电网对光伏波动性的适应能力。
一、引言
(一)研究背景与意义
近年来,以光伏发电为代表的分布式电源(Distributed Generation, DG)在配电网中的渗透率不断提高,给传统配电网的运行和控制带来了新的挑战。光伏发电具有间歇性和波动性的特点,其输出功率受光照强度、温度等气象因素影响显著,这使得配电网的潮流分布变得更加复杂,可能导致节点电压越限、网损增加等问题。因此,如何有效应对光伏波动性,实现主动配电网的有功无功协调优化,成为当前电力系统研究的热点问题。
(二)国内外研究现状
针对含光伏电源的配电网优化问题,国内外学者开展了大量研究。传统的优化方法主要集中在确定性优化,忽略了光伏出力的不确定性。近年来,随着概率统计理论和优化算法的发展,随机优化、鲁棒优化等方法被引入到配电网优化中,以应对光伏波动性带来的影响。在优化算法方面,粒子群优化算法(PSO)因其简单易实现、收敛速度快等优点,被广泛应用于配电网优化问题。然而,传统 PSO 算法存在易陷入局部最优、早熟收敛等问题,尤其在处理高维、复杂优化问题时,其性能有待进一步提高。
(三)研究内容与创新点
本文的主要研究内容包括:
-
建立考虑光伏波动性的主动配电网有功无功协调优化模型,综合考虑系统网损最小、电压偏移最小和电压稳定性最强等多个目标。
-
提出基于小生境粒子群优化算法的求解方法,通过引入小生境技术,保持种群的多样性,提高算法的全局搜索能力。
-
设计算例验证所提模型和算法的有效性,并与传统优化方法进行对比分析。
本文的创新点在于将小生境粒子群优化算法应用于考虑光伏波动性的主动配电网优化问题,同时考虑有功和无功的协调优化,有效应对光伏出力的不确定性,提高配电网的运行效率和稳定性。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 唐正茂,马士虎,解德.基于外部存档的并行遗传算法在水轮机调速器参数优化中的应用[J].中国电机工程学报, 2012, 32(28):7.DOI:CNKI:SUN:ZGDC.0.2012-28-012.
[2] 王定益,王丽亚.一种改进遗传算法在生产车间设备布局中的应用[J].计算机工程与应用, 2005, 41(14):4.DOI:10.3321/j.issn:1002-8331.2005.14.058.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇