二连杆及三连杆的正逆运动学及雅可比

本文介绍了二连杆和三连杆机械臂的正逆运动学模型及其求解方法。通过MATLAB代码展示了正运动学函数的实现,包括雅可比矩阵的计算。同时,详细探讨了逆运动学的解法,特别是针对二连杆模型,给出了求解关节角度的算法。此外,三连杆模型的运动学问题通过转化为二连杆问题来解决。这些理论和算法对于机器人控制系统的简化和验证具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二连杆和三连杆是进行机器人控制中常用的模型,虽然机械臂大多是六轴,但是为了减轻求解复杂度,方便对算法的验证,仍会将六轴机械臂简化为两轴或者三轴的形式。

二连杆正逆运动学及雅可比

正运动学

function [x,y] = kin2(q1,q2,A)

a = A(1);
b = A(2);
x = acos(q1)+bcos(q1+q2);
y = asin(q1)+bsin(q1+q2);

end

微分运动学(雅可比)

function [J2] = dKin2(q1,q2,A)

a = A(1);
b = A(2);

J2 = zeros(2)
J2(1,1) = -asin(q1)-bsin(q1+q2);
J2(1,2) = -bsin(q1+q2);
J2(2,1) = a
cos(q1)+bcos(q1+q2);
J2(2,2) = b
cos(q1+q2);

end

逆运动学

如图,由第二连杆末端向x轴做垂线,并连接第二连杆和原点,形成一个边长为 [公式] 的直角三角形,记该直角三角形左下角为 [公式] ,有 [公式]

求解q1

取平方并相加

对x和y进行替换并移项,得到

应用三角公式得到

得到

公式1
求解q2

求解q1+q2的过程和求解q1是对称的,可以得到

得到

公式2

但是这里并不是有四组解。由于

因此,公式1和公式2中的±号始终是相反的,仅有两组解。下面代码仅考虑q2>0

function [q1,q2] = iKin2(x,y,A)

a = A(1);
b = A(2);

q0 = atan2(y./x);
a0 = (x.2+y.2).^0.5;

temp = (x.2+y.2+a.2-b.2)./(2*a0.*a);
q1 = -acos(temp)+q0;

temp = (x.2+y.2-a.2+b.2)./(2*a0.*b);
q2 = acos(temp)+q0-q1;

end

三连杆正逆运动学及雅可比

正运动学

function [x,y,theta] = kin3(q1,q2,q3,A)

a = A(1);
b = A(2);
c = A(3);

x = acos(q1)+bcos(q1+q2)+ccos(q1+q2+q3);
y = a
sin(q1)+bsin(q1+q2)+csin(q1+q2+q3);
theta = q1+q2+q3;

end

微分运动学

function [J3] = dKin3(q1,q2,q3,A)

a = A(1);
b = A(2);
c = A(3);

J3 = zeros(3)
J3(1,1) = -asin(q1)-bsin(q1+q2)-csin(q1+q2+q3);
J3(1,2) = -b
sin(q1+q2)-csin(q1+q2+q3);
J3(1,3) = -c
sin(q1+q2+q3);

J3(2,1) = acos(q1)+bcos(q1+q2)+ccos(q1+q2+q3);
J3(2,2) = b
cos(q1+q2)+ccos(q1+q2+q3);
J3(2,3) = c
cos(q1+q2+q3);

J3(3,3) = 1;
J3(3,3) = 1;
J3(3,3) = 1;

end

逆运动学

三连杆的逆运动学可以化为二连杆的逆运动学进行求解。根据正运动学得到

转变为一个二连杆运动学进行求解即可。仅考虑q2>0

function [q1,q2,q3] = iKin3(x,y,theta,A)

a = A(1);
b = A(2);
c = A(3);

xx = x-ccos(theta);
yy = y-c
sin(theta);
AA = [a,b];

[q1,q2] = iKin2(xx,yy,AA);
q3 = theta - q1 -q2;

end

### 机器人逆运动学控制算法概述 机器人逆运动学(Inverse Kinematics, IK)是一种用于计算关节角度的技术,使得末端执行器能够达到指定的空间位置和姿态。以下是几种常见的逆运动学求解方法及其特点: #### 解析法 解析法通过代数运算直接得出逆运动学方程的闭合形式解决方案[^1]。这种方法适用于具有简单几何结构的机械臂,例如平面两连杆机械臂。其优点在于计算速度快且精度高;然而,对于复杂多自由度机械臂而言,可能难以获得解析解。 ```python import numpy as np def analytical_ik(L1, L2, x_target, y_target): r_squared = x_target**2 + y_target**2 cos_theta2 = (r_squared - L1**2 - L2**2) / (2 * L1 * L2) theta2 = np.arccos(cos_theta2) k1 = L1 + L2*cos_theta2 k2 = L2*sin(theta2) theta1 = np.arctan2(y_target, x_target) - np.arctan2(k2, k1) return theta1, theta2 ``` 上述代码展示了一个简单的连杆机械臂解析IK函数[^2]。 #### 数值法 数值法利用迭代优化技术逐步逼近目标位姿,在每次迭代过程中调整各关节变量直至满足误差收敛条件为止[^3]。相比解析法更加灵活通用,适合处理冗余自由度或者非线性较强的系统模型。常用算法包括梯度下降法、可比转置法以及阻尼最小乘法等。 ```python from scipy.optimize import minimize def numerical_ik(joint_limits, forward_kinematics, target_pose, initial_guess): def objective_function(q): current_pose = forward_kinematics(q) error = np.linalg.norm(target_pose - current_pose) return error result = minimize(objective_function, initial_guess, bounds=joint_limits) return result.x ``` 此段Python脚本定义了一种基于SciPy库实现的一般化数值型逆向动力学求解程序框架[^4]。 #### 基于机器学习的方法 近年来随着人工智能的发展,也有研究者尝试采用神经网络来近似映射输入空间到输出配置之间的关系模式[^5]。这类方法无需显式构建物理约束表达式即可完成训练后的预测任务,但在泛化能力和实时性能方面仍需进一步探索改进。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值