13.2 非线性变化的图像增强和补偿——基于DWT的图像自适应增强 (matlab程序)

文章介绍了图像增强在改善图像视觉效果中的应用,包括灰度图像和彩色图像增强,以及空域处理和频域处理方法。重点提出了一种基于离散小波变换(DWT)的模糊自适应图像增强方法,通过小波分解和非线性变换实现对图像细节的优化。代码示例展示了如何使用MATLAB进行小波变换和增强过程。
摘要由CSDN通过智能技术生成

1.简述

      

在实际应用当中,有时候需要进行图像增强来改善图像的视觉效果。在此问题处理当中,按照颜色可以分为灰度图像增强和彩色图像增强。按照作用域分类,可以分为空域处理和频域处理。

图像空域处理方法通常有灰度变换,直方图均衡,图像平滑和锐化。频域处理有DFT变换,采用滤波的方法进行图像增强。现有的方法自适应的效果都比较差,这里提出一种模糊自适应的方法——基于DWT的图像自适应增强。

2.代码

 

clear all;
B = double(imread('lena.bmp'));            
A = B(:,:,1);
s = size(A); s1 = s(1,1); s2 = s(1,2);
figure,imshow(A/256);

%%    对图像A作小波变换
h = sqrt(2)*[-1/8,1/4,3/4,1/4,-1/8]; 
g = sqrt(2)*[0,0,-1/4,1/2,-1/4];

DEPTH = 4;                                    % 小波分解的层数
b = 0.2; c = 5; 
a = 1/(1/(1+exp(c*(b-1)))-1/(1+exp(c*(1+b))));
k = 1; ALL = A;
while (k <= DEPTH)<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值