HOA的灵感来自徒步旅行,一种流行的娱乐活动,以认识到优化问题的搜索景观与徒步旅行者穿越的山区地形之间的相似性。HOA的数学模型以Tobler的徒步旅行函数(THF)为前提,该函数通过考虑地形的海拔和所覆盖的距离来确定徒步旅行者(即代理人)的步行速度。THF用于确定徒步旅行者在解决最佳化问题过程中的位置。
1、HOA算法
HOA的灵感来自徒步旅行者试图登上山峰、丘陵或岩石的经历,视情况而定。在徒步旅行过程中,徒步旅行者有意或下意识地考虑地形的陡峭程度。他们避开高度陡峭的地形和小径,以保持徒步旅行或步行速度。换句话说,高度陡峭的地形和小径会减慢徒步旅行者的速度,最终延长徒步旅行。凭借对地形地理的认识,徒步旅行者可以确定或粗略估计他们到达顶峰所需的时间。这类似于代理试图找到最佳化问题的局部最优或全局最优。优化的景观或搜索空间类似于徒步旅行者穿越山区到达顶峰。此外,在寻找全局最优时,由于最佳化问题的复杂性,代理陷入了某些搜索空间位置,这可能会延长定位全局最优所需的时间,这也类似于徒步旅行者在徒步旅行过程中的经历。这项工作的前提是模拟徒步旅行解决优化问题的经验。
1、数学基础
HOA(Hiking Optimization Algorithm,登山优化算法)的数学基础基于广为人知的Tobler登山函数,由美国-瑞士地理学家兼制图师Waldo Tobler提出。Tobler的登山函数是一个指数函数,用于确定登山者的速度,考虑了地形或路径的陡度或坡度。
(1)Tobler登山函数(THF)给出如下公式
W i , t = 6 e − 3.5 ∣ S i , t ∣ + 0.05 W_{i,t} = 6e^{-3.5|S_{i,t}|+0.05} Wi,t=6e−3.5∣Si,t∣+0.05
其中, W i , t W_{i,t} Wi,t是第i个登山者在时间t的速度(单位:公里/小时), S i , t S_{i,t} Si,t是地形或路径的坡度。此外,坡度 S i , t S_{i,t} Si,t由下式表示:
S i , t = d h d x = tan θ i , t S_{i,t} = \frac{dh}{dx} = \tan \theta_{i,t} Si,t=dxdh=tanθi,t
其中,dh和dx分别表示登山者所经过的高度差和距离差。此外, θ i , t \theta_{i,t} θi,t是第i个登山者在时间t所经历的路径倾斜角,范围为([0°, 50°])。
2、HOA优化算法的描述
HOA利用了登山者群体中的社交思维以及个人认知能力的优势。登山者的实际速度是THF函数决定的初始速度、领队位置、登山者当前位置和扫描因子(SF)的函数。因此,第i个登山者的当前速度由下式给出:
W i , t = W i , t − 1 + γ i , t ( β best − α i , t β i , t ) W_{i,t} = W_{i,t-1} + \gamma_{i,t}(\beta_{\text{best}} - \alpha_{i,t}\beta_{i,t}) Wi,t=Wi,t−1+γi,t(βbest−αi,tβi,t)
其中, γ i , t \gamma_{i,t} γi,t是范围为[0, 1]的均匀分布随机数, W i , t − 1 W_{i,t-1} Wi,t−1分别代表第i个登山者当前和初始速度, β best \beta_{\text{best}} βbest是领队的位置, α i , t \alpha_{i,t} αi,t是第i个登山者的扫描因子,范围为[1, 3]。根据公式(1),第i个登山者的更新位置由以下公式给出:
β i , t + 1 = β i , t + W i , t \beta_{i,t+1} = \beta_{i,t} + W_{i,t} βi,t+1=βi,t+Wi,t
在包括HOA的各种元启发式算法中,初始设置是影响可行解的可达性和收敛速度的重要方面。HOA使用随机初始化技术来初始化登山者的位置,尽管其他方法(如基于启发式或特定问题的初始化方法)也存在。登山者位置 β i , t \beta_{i,t} βi,t的初始化由解的上界 ϕ j 2 \phi_j^2 ϕj2和下界 ϕ j 1 \phi_j^1 ϕj1决定,其公式如下:
β i , t = ϕ j 1 + δ j ( ϕ j 2 − ϕ j 1 ) \beta_{i,t} = \phi_j^1 + \delta_j(\phi_j^2 - \phi_j^1) βi,t=ϕj1+δj(ϕj2−ϕj1)
其中,
δ
j
\delta_j
δj是范围为[0, 1]的均匀分布随机数,
ϕ
j
1
\phi_j^1
ϕj1和
ϕ
j
2
\phi_j^2
ϕj2分别是第j个解的下界和上界。当SF范围增加时,HOA倾向于更加偏向开发阶段;相反,减少SF范围会鼓励HOA处于探索阶段。此外,减小路径的倾斜角度也会使HOA向开发阶段转变。这些因素共同影响了HOA在解决优化问题时的行为和性能。
Ref: Oladejo S O, Ekwe S O, Mirjalili S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach[J]. Knowledge-Based Systems, 2024, 296: 111880.