Python开发的方向太多了,有机器学习,数据挖掘,网络开发,爬虫等等。其实在生信领域,Python还显现不出绝对的优势,生信的大部分软件流程都是用shell或Perl写的,而且已经足够好用了。我选Python是因为我想顺便学点数据挖掘和机器学习的东西,而且Python这些年越来越火,发展势头远超其他脚本语言,所以学它肯定是没错的。
图片一、入门标准
入门比较难定义,什么程度才算入门呢?
掌握基本的语法,熟练使用python的内置类型、内置函数和数据结构。
了解一些基本的模块的使用,能够实现一些简单的需求。
后面有一个实例,如果你能简单的做完,那我敢肯定你已经入门了。
二、基本知识点
1.基本语法
缩进:Python是通过代码缩进来决定代码层次逻辑的,一般约定使用4个空格
版本问题:主要包括2.x系列的和3.x系列的,两者语法不同且不兼容,有的模块只能在指定版本下安装。建议使用3.x Python,碰到特殊问题再去使用指定版本
文件编码声明:python会去环境变量里寻找python解释器。如果代码里有中文,则要以utf-8编码
#!/usr/bin/env python
#-*- coding: utf-8 –*-
变量定义:使用前要先定义
dir():列出一个数据类型或对象的所有方法,非常好用,同help()
文件操作:f = open(),f.close();with open() as f: ,os.path.exists(),os.path.isfile(),os.path.abspath()
目录操作:os.mkdir(),os.rmdir(),os.listdir(),os.chdir()
开发环境选择:
- Sublime Text 对Python支持挺好,轻量级生化武器(推荐)
- Eclipse+Pydev比较厚重,大型开发比较适合
- Vim/Atom
- PyCharm
- IPython
- WingIDE
2.处理数据
2.1 基本数据类型:布尔;整型;浮点型;字符串
# 字符串的内置函数,都比较有用
'capitalize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill'
2.2 基本数据结构:列表、元组、字典、集合。
数据结构就是一种容器,用于在内存中存放我们的数据。
列表:任意元素组成的顺序序列,以位置为索引。
# 列表的内置函数
'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort'
元组:相当于不可变的列表,防止错误修改,节省内存开销。元组解包
# 元组的内置函数
'count', 'index'
字典:键值对,没有顺序,键必须是常量。
# 字典内置函数
'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values'
集合:没有顺序,元素之间没有重复,相当于舍弃了值的字典。集合操作(&,|,-,^,<,<=,>,>=)
# 集合内置函数
'add', 'clear', 'copy', 'discard', 'pop', 'remove', 'update'
'isdisjoint','issuperset','issubset','symmetric_difference','difference','union', 'intersection', 'symmetric_difference_update','intersection_update','difference_update',
2.3 控制语句
条件:if…else…
循环:for,while,break,continue
2.4 模块使用
Python有着非常友好的模块安装方法,一个pip install命令几乎可以安装绝大多数的模块。建议使用模块前多看相关API文档。
最常用的模块有:sys,os,re,csv,gzip,fileinput,random,collections,time;百度上有很多很好的模块使用入门教程。
- 正则表达式 re
- 有序字典 collections.OrderedDict()
- 调用系统命令 subprocess.call()
三、入门实例
题目:从大量FASTA文件中提取指定序列,并对提取到的序列做某些处理(如求反向互补序列)
描述:假设你有很多测序数据,分别存储在不同文件夹的不同文件里,现在给你一些序列名,要求你从众多数据中提取出特定的序列。
PS:这里本来应该有大量实例,而且大神还亲自录制了好些视频,可以在我们论坛(http://www.biotrainee.com/forum-90-1.html)找到每个实例的详细描述以及代码和解题思路
思路:遍历每一个文件夹;遍历每一个文件;读取文件,判断序列,输出序列(处理),关闭文件;处理数据,添加一个函数即可。
四、精通标准
当然这只是个噱头,精通的道路是无止境的,下面只是罗列了一些常见的高级特性。
- 切片,推导式,生成器,异常处理
- 高级模块:threading(多线程),ctypes(调用C程序优化性能),logging(日志)
- 专业模块:pysam - 处理基因组数据(fasta/fastq/bam/vcf)的Python模块
- Biopython:Python的计算分子生物学和生物信息学工具包
- 编写自己的package:解决某个特定需求,上传到 PyPI,然后你就成为大神了
- 编程规范:写出规范化的代码 Google Python coding style
- 函数式编程:即使代码量暴增也不会影响代码的可读性,调试和Debug也会变得非常简单。
- 面向对象编程:最高级的编程方法,对函数进行分类和封装,让开发“更快更好更强…”
五、最后
Python只是一门编程语言,一种实现工具,我们可以用很多种语言来替换它,我们之所以选择Python,是因为我们喜欢它给我们带来的便捷。如果你想深入某个领域,其实真正重要的是技术背后的算法。
在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
多多交流问题,互帮互助,这里有不错的学习教程和开发工具。
(python兼职资源+python全套学习资料)

一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
四、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、Python练习题
检查学习结果。
七、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后,千万别辜负自己当时开始的一腔热血,一起变强大变优秀。