RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对

所谓 RAG,简单来说,包含三件事情。

第一,Indexing。即怎么更好地把知识存起来。

第二,Retrieval。即怎么在大量的知识中,找到一小部分有用的,给到模型参考。

第三,Generation。即怎么结合用户的提问和检索到的知识,让模型生成有用的答案。这三个步骤虽然看似简单,但在 RAG 应用从构建到落地实施的整个过程中,涉及较多复杂的工作内容(细节上是魔鬼)。

架构几乎按照这个模块设计,但是各家落地方案各有不同

先看一下各家的技术方案

有道的QAnything

亮点在:rerank

RAGFLow

亮点在:数据处理+index

智谱AI

亮点在文档解析、切片、query改写及recall模型的微调

FastGPT

优点:灵活性更高

下面分别按照模块比较各框架的区别

功能模块QAnythingRAGFLow智谱AIFastGPT
知识处理模块pdf文件解析是抑郁PyMUPDF实现的,目前效率最高的,解析文档的文字采用的是PyMuPDF的get_text.不区分文字文档,还是图像文档(图像文档的若没有文字会报错)OCR, Document Layout Analyze 等,这些在常规的 RAG 中可能会作为一个不起眼的 Unstructured Loader 包含进去,可以猜到 RagFlow 的一个核心能力在于文件的解析环节
召回模块向量库采用milvus的混合检索(BM25+向量检索),不设置阈值,返回topk(100)向量数据库使用的是 ElasticSearch。混合检索,实现的是文本检索 + 向量检索,
没有指定具体的向量模型,但是使用huqie作为文本检索的分词器语义检索
语义检索模式通过先进的向量模型技术,将知识库中的数据集转换成高维向量空间中的点。在这个空间中,每个文档或数据项都被表示为一个向量,这些向量能够捕捉到数据的语义信息。当用户提出查询时,系统同样将问题转化为向量,并在向量空间中与知识库中的向量进行相似度计算,以找到最相关的结果。

优势:能够理解并捕捉查询的深层含义,提供更加精准的搜索结果。
应用场景:适用于需要深度语义理解和复杂查询处理的情况,如学术研究、技术问题解答等。
技术实现:利用如text-embedding-ada-002等模型,对文本数据进行embedding,实现高效的语义匹配。

全文检索
全文检索模式侧重于对文档的全文内容进行索引,允许用户通过输入关键词来检索文档。这种模式通过分析文档中的每个词项,并建立一个包含所有文档的索引数据库,使用户可以通过任何一个词或短语快速找到相关的文档。

优势:检索速度快,能够对大量文档进行广泛的搜索,方便用户快速定位到包含特定词汇的文档。
应用场景:适用于需要对文档库进行全面搜索的场景,如新闻报道、在线图书馆等。
技术实现:采用倒排索引技术,通过关键词快速定位到文档,同时结合诸如TF-IDF等算法优化搜索结果的相关性。

混合检索
混合检索模式结合了语义检索的深度理解和全文检索的快速响应,旨在提供既精准又全面的搜索体验。在这种模式下,系统不仅会进行关键词匹配,还会结合语义相似度计算,以确保搜索结果的相关性和准确性。

优势:兼顾了全文检索的速度和语义检索的深度,提供了一个平衡的搜索解决方案,提高了用户满意度。
应用场景:适合于需要综合考虑检索速度和结果质量的场景,如在线客服、内容推荐系统等。
技术实现:通过结合倒排索引和向量空间模型,实现对用户查询的全面理解和快速响应。例如,可以先通过全文检索快速筛选出候选集,再通过语义检索从候选集中找出最相关的结果。
向量模型采用:BGE-M3

别通过向量检索、文本检索召回数据,并采用RFF算法排序; | 采用文章结构切片以及 small to big 的索引策略可以很好地解决。针对后者,则需要对 Embedding 模型进行微调。我们有四种不同的构造数据的方案,在实践中都有不错的表现:
Query vs Original:简单高效,数据结构是直接使用用户 query 召回知识库片段;

Query vs Query:便于维护,即使用用户的 query 召回 query,冷启动的时候可以利用模型自动化从对应的知识片段中抽取 query;

Query vs Summary:使用 query 召回知识片段的摘要,构建摘要和知识片段之间的映射关系;

F-Answer vs Original:根据用户 query 生成 fake answer 去召回知识片段。

总结:

1、Qanything rerank模块设计的最好

2、RAGFlow 文档处理最好

3、FastGPT 模块动态配置多

4、智谱RAG,在领域数据上微调训练最好

全维度。没有最好,在自己业务的数据上,能落地就是最好的~。落地为王

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想了解如何在企业知识库中实施RAG(检索增强生成)方案。首先,我需要回顾一下RAG的基本原理和现有的开源项目,比如QAnything和ElasticSearch-Langchain。记得RAG结合了检索模型和生成模型,利用私有数据增强生成结果,适合解决数据时效性和隐私问题。 用户可能关心实施方案的具体步骤,我需要分阶段说明。第一阶段是知识库构建,包括数据收集和处理。企业可能有多种格式的文档,比如PDF、Word等,所以需要解析工具。例如,QAnything支持多格式文档解析,可能是一个好的参考[^1]。另外,数据清洗和分块也很重要,尤其是处理长文本时,合理的分块策略能提升检索效果。 接下来是检索系统设计。这里需要考虑混合检索,结合Elasticsearch的关键词检索和向量检索,提高准确性和召回率。引用中提到Elasticsearch-Langchain项目,可能提供了相关实现方法[^2]。同时,优化检索效率,比如使用Faiss或HNSW进行向量索引,可以加速查询。 然后是生成模型部分。选择合适的LLM,如开源的Llama 2或商用API,需根据企业需求平衡性能和成本。提示词工程也很关键,设计清晰的指令让模型生成符合需求的回答。可能还需要微调模型,使其更适应特定领域的数据,提升生成质量。 部署和优化阶段,需要考虑本地化部署,确保数据安全。引用中的项目提到完全本地化推理,适合企业私域部署[^4]。此外,持续监控和反馈机制能帮助系统迭代优化,比如用户反馈错误答案,调整检索策略或模型参数。 用户可能还想知道如何保障数据安全,这一点在方案中应强调私有化部署和访问控制。同时,如何处理非结构化数据,可能需要OCR或表格解析技术,QAnything已经支持这些功能。 最后,生成相关问题时要覆盖用户可能的后续疑问,比如数据准备、混合检索优势、本地化部署和安全措施,以及评估方法。确保回答结构清晰,步骤明确,引用相关项目作为示例,增强可信度。</think>### RAG在企业知识库的落地实施方案 #### 一、核心架构设计 RAG系统需包含知识库构建、检索增强、生成优化三大模块。典型流程为: 1. **知识库构建**:解析企业文档(PDF、Word等),提取结构化/非结构化数据 2. **检索阶段**:通过混合检索(关键词+向量)获取相关知识片段 3. **生成阶段**:将检索结果输入大语言模型生成最终回答 示例系统架构: ``` $$ \begin{array}{ccc} \text{企业文档} & \rightarrow & \text{解析模块} \\ & & \downarrow \\ \text{向量数据库} & \leftarrow & \text{Embedding模型} \\ & & \uparrow \\ \text{用户查询} & \rightarrow & \text{混合检索} \rightarrow \text{LLM生成} \end{array} $$ ``` #### 二、实施步骤分解 1. **知识库构建阶段** - 数据采集:对接企业知识管理系统,支持PDF解析(引用QAnything的文档解析能力) - 数据清洗:去除重复/无效内容,使用正则表达式处理特殊格式 - 分块策略:采用滑动窗口算法,设置$window\_size=512$,$overlap=64$字符 2. **检索系统设计 - 混合检索实现: $$ score = \alpha \cdot BM25(q,d) + (1-\alpha) \cdot cosine\_similarity(v_q,v_d) $$ 其中$\alpha$取值建议0.3-0.7 - 使用Elasticsearch搭建关键词检索服务,结合Faiss构建向量索引[^3] 3. **生成优化策略 - 提示词工程模板: ```text 你是一个企业知识助手,请根据以下上下文: {context_str} 回答问题:{query_str} 若信息不足请回答"不清楚" ``` #### 三、关键实现技术 | 模块 | 技术选型 | 开源方案参考 | |------|----------|--------------| | 文档解析 | PDFplumber, Unstructured | QAnything | | 向量模型 | BGE-M3, Text2Vec | HuggingFace Models | | 检索框架 | Elasticsearch+Langchain | ElasticSearch-Langchain项目[^2] | | 生成模型 | Llama2-13B, ChatGLM3 | 本地化部署方案 | #### 四、企业级优化建议 1. **数据安全**:采用全链路加密传输,支持GPU裸金属部署 2. **性能优化**:建立缓存机制,对高频查询实现响应时间<500ms 3. **效果评估**:构建测试集验证指标: - 检索召回率$Recall@5 > 85%$ - 生成准确率$Accuracy > 90%$ - 幻觉率$Hallucination\_Rate < 5%$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值