Nature Commun | 融合12种人工智能方法开展生存分析,建模方案值得借鉴!

近日发表在Nature Communication的论文综合运用人工智能算法、特征选择方法、综合评估策略开展生存分析。该研究组合人工智能算法和特征选择方法构建模型,并利用三种评估策略五种评价指标综合评价的建模过程非常全面,大多数论文应该只需要保留流程,方法与指标数量可以适当简化。同时,该研究使用的风险分层方法“无偏非参数条件推断生存树”也是一种比较新颖的方法,各位读者也可以考虑在自己的研究中使用。该研究相关论文和代码的链接请看文末。

引言

心力衰竭是指心脏无法有效泵出足够的血液以满足身体的需要,导致身体各器官和组织供血不足的疾病。心力衰竭并不是一种独立的疾病,而是多种心脏病的最终阶段。为了及时转诊、合理规划治疗和随访策略,对这些心力衰竭人群进行生存分析和预后分层显得尤为重要。尽管目前已经有许多基于传统统计方法的研究成果,但是临床数据的高维度以及并发症间的复杂交互性使得这些成果难以有效应用。

随着机器学习、深度学习等技术的不断成熟,AI在预测患者预后、评估死亡风险以及优化治疗方案等方面展现出了巨大潜力。但是由于算法选择往往基于研究者的主观判断,模型构建往往基于在特定临床试验或单一中心,当前的AI工具常常面临泛化性不佳的问题。本文分享的这篇Nature Communications论文综合运用人工智能算法、特征选择方法、综合评估策略开展生存分析,旨在开发和验证一种可解释的生存评估方案。

数据及方法

该研究首先选择了93个易于获取的变量作为最初的候选变量,其次使用单变量Cox比例风险回归和Log-rank检验确定了46个特征用于模型的构建,接着组合12种人工智能方法和特征选择方法构建了132个预测模型,然后使用综合评估策略认定其中1个模型为AIHFLevel,最后使用无偏非参数条件推断生存树基于AIHFLevel实现患者的风险分层。

该研究基于河南省心血管病临床研究中心的内部数据集和贝斯以色列女执事医疗中心的外部数据集。其中内部数据集包含712名患者,外部数据集包含1024名患者。该研究使用11类93个易于获取的变量作为开展预测模型构建的候选因子。对于其中的缺失数据,该研究使用MICE(Multiple imputation with chained equations)进行缺失值补全。

对于93个候选变量,该研究首先通过单变量Cox比例风险回归和Log-rank检验确定了46个特征用于模型的构建,并在模型构建过程中使用了以下12种人工智能方法:

  • L1-regularized PH regression (L1.regularization)

  • L2-regularized PH regression (L2.regularization)

  • ElasticNet-regularized PH regression (ENet.regularization)

  • Survival random forest SRC learner (Surv.RFsrc)

  • Survival support vector machine (Surv.SVM)

  • survival tree (Surv.rpart), Cox model with

  • likelihood-based boosting (Surv.Coxboost)

  • Boosted generalized linear survival learner (Surv.glmboost)

  • Extreme gradient boosting survival learner (Surv.Xgboost)

  • Survival gradient boosting machine learner (Surv.gbm)

  • Survival fully parametric learner(Surv.Fully-parametric)

  • Accelerated oblique random survival forest learner (Surv.aorsf).

该研究基于以上12种人工智能算法,通过两种拟合方式共构建了132种建模方案。这两种拟合方式一是直接基于其中一种算法使用46个特征拟合模型;二是首先使用其中一种方法进行特征选择,然后使用剩余的算法拟合模型。

对于132种建模方案所生成的对应模型,该研究采用10折交叉验证、蒙特卡洛交叉验证(MCCV)以及Bootstrap分析三种评估策略,使用一致性指数(C-index)、AUC、综合Brier评分(Integrated Brier score)、校准曲线以及决策曲线五种评价指标对模型的有效性和相关性进行了综合评估。其中,该研究将C-index作为主要的性能指标,通过三种评估策略计算C-index,并将平均值最高的模型方案认定为最有效的模型,即AIHFLevel。

为了提升透明度,该研究使用Shapley Additive exPlanation(SHAP)分析各个变量对AIHFLevel的贡献,通过在个体层面可视化各项特征对未来生存结果的影响,可以清晰地展示了每个特征如何影响AIHFLevel的预测,为医生了解预测模型的决策依据提供方便。

基于AIHFLevel构建过程中的特征选择结果,该研究通过无偏非参数条件推断生存树生成了包含高风险、中等风险和低风险的预后分层树,并采用了t-SNE(t-distributed Stochastic Neighbor Embedding)技术对变量进行降维和可视化处理,用于观察不同风险组别在降维后的空间分布情况。

获取高风险、中等风险和低风险之后的生存曲线本文就不再赘述了。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值