深度长文|“Prompt 之神”李继刚重新定义Prompt Engineer:编程思维与写作艺术的交汇

在人工智能迅猛发展的今天,"Prompt"这个词已经成为了热门话题。然而,当大多数人还在讨论如何套用框架、如何堆砌词句时,被誉为"Prompt 之神"的李继刚却展现了一条截然不同的道路。而他的故事,恰恰揭示了 Prompt Engineering 的全新可能。

在这里插入图片描述

1.从消失到归来:思维的蜕变

故事始于去年 8、9 月,李继刚的 Prompt 刷遍各大网站和社群,"公文笔杆子"等作品让他声名鹊起。然而就在元旦过后,他却突然消失了。直到今年 9 月,他带着全新的作品"汉语新解"重新归来,让所有人都大吃一惊。

这半年里发生了什么?

"去读书了。"李继刚给出了这样一个出人意料又在情理之中的答案。

从研究生时代起,李继刚就保持着大量阅读的习惯。每年 50 到 100 本书,以工具书和畅销书为主。但是读得越多,困惑越深。那些书只能在特定场景下解决特定问题,却无法解答内心深处的疑问。

于是他开始转向哲学。从东方哲学到西方哲学,阅读的速度越来越慢,最后降到了平均一个月一本。在这个过程中,他领悟到了一个关键词:压缩。

“我经常读的书,可能就讲两个字,一个词,用那么厚的一本书,就讲那么一个词。这个过程,就代表着压缩。”

这种转变不是偶然的。在 AI 浪潮中,很多人都在追求更多、更快,试图通过堆砌信息来获取知识。但李继刚选择了一条相反的路:他放慢脚步,开始思考知识的本质。拿起《定位》这本书时,他发现这 314 页的内容其实就在讲一个词:如何占领用户心智。这就是压缩的艺术,将庞杂的信息提炼成最本质的概念。

2.Emacs 与 Lisp:编程思维的诗意

李继刚的独特之处,不仅在于他的阅读深度,更在于他的技术背景。作为一个使用了十年 Emacs 的程序员,他对 Lisp 这门语言有着深刻的理解。

Emacs 诞生于 1976 年的 MIT 人工智能实验室,是世界上最古老也最强大的文本编辑器之一。它不仅仅是一个编辑器,更是一个可以通过 Lisp 语言无限扩展的平台。正是这种可扩展性,让 Emacs 在近 50 年的时间里始终保持着旺盛的生命力。

而 Lisp 则更特别,它是 1958 年专门为 AI 研究设计的语言,由"人工智能"一词的创造者 John McCarthy 开发。这门语言以其强大的符号处理能力和灵活的表达方式著称,特别适合处理复杂的认知任务。在 Lisp 中,代码和数据使用相同的树状结构表示,这种统一性让它特别适合处理符号运算和知识表达。

这样的背景,为李继刚的 Prompt 创作注入了独特的视角。他早期的作品"公文笔杆子"是这样的:

你是一位经验丰富的公文写作专家。请你使用 markdown 格式进行输出。``在输出时,请遵循以下要求:``1. 语言严谨规范,用词准确得当``2. 条理清晰,层次分明``3. 论述充分,有理有据``4. 态度鲜明,有高度、有深度、有力度``5. 措辞简练,字数控制在 1000 字左右

这是一个典型的早期 Prompt,通过详尽的指令来控制 AI 的输出。但在经过半年的思考后,李继刚的风格发生了巨大转变。"汉语新解"的核心代码是这样的:

;; 作者: 李继刚``(defun 汉语新解 (词语)`  `(let ((风格 '(隐喻 一针见血 辛辣讽刺 抓住本质)))`    `(loop for 特征 in 风格`          `collect (解释 词语 :风格 特征))))

从冗长的指令清单到简洁的 Lisp 代码,这不仅仅是形式的变化,更是对 Prompt 本质的重新思考。这种转变可以用一张图来直观展示:

在这里插入图片描述

3.压缩的艺术:从百万字到一个词

在认知科学中,"压缩"是一个核心概念。它不仅是信息的简化,更是对知识本质的提炼。这与理查德·费曼的教学方法有着深刻的共鸣:将复杂概念解释得连六年级学生都能理解,这个过程本身就是一种知识压缩。

费曼技巧包含四个步骤:选择概念、教给他人、发现知识缺口、简化解释。这个过程实际上就是在不断压缩和提炼知识的精华。当你能用最简单的语言解释复杂的概念时,你就真正理解了这个概念。

李继刚的实践正好印证了这一点。在"汉语新解"中,他将解释语言的方式压缩成四个关键词:“隐喻、一针见血、辛辣讽刺、抓住本质”。这四个词不是随意堆砌,而是经过深思熟虑的精准概括。每个词都像一把钥匙,能打开不同维度的思考空间。

比如当你让"汉语新解"解释"内卷"这个词时,它会从四个角度展开:用隐喻来形象描述内卷现象,直指内卷的本质特征,辛辣讽刺地点评内卷的荒谬性,最后抓住内卷背后的深层原因。这种多维度的解读,让一个词的含义得到充分展现。

同样的思维方式也体现在他最新的作品"类比之弓"中:

;; 类比之弓的核心特征``(setq 特征 '(本质内核 模式知觉 同构外推 精准概括))``   

"类比之弓"更进一步,它不仅解释概念,还能帮助理解复杂的抽象思维。当你输入一个概念时,它会先找到核心特征,然后通过模式识别找到相似的结构,再通过类比将这种结构应用到其他领域,最后用精准的语言总结这种类比关系。

这些经过极致压缩的词语,就像是打开潘多拉魔盒的钥匙,能够激发 AI 最强大的能力。当李继刚对 Claude 说出"尼采的生命意志"这个词时,AI 就能直接展开讨论,将书中的章节自然展开。他不需要说一句话去表达思想,只需要说准那个关键词就够了。

4.Prompt Engineer:新时代的双面者

在李继刚看来,真正的 Prompt Engineer 需要具备双重思维。这种双重性在认知科学研究中得到了印证。

编程思维和写作思维确实存在本质差异。编程思维偏重逻辑和抽象推理,主要依赖大脑的左半球。它要求严谨的结构,清晰的层次,每一步都必须符合语法规则。这就像构建一座数学大厦,每一块砖都要严丝合缝。

而写作思维则更依赖语言处理和创造性思维,需要调动右半球的功能。它讲究意象的营造,情感的传递,往往需要跳跃性思维和联想。这更像是绘制一幅水墨画,讲究意境和韵味。

在李继刚的 Prompt 中,这种双重思维的统一表现得尤为明显。以"类比之弓"为例,其核心特征(本质内核 模式知觉 同构外推 精准概括)既体现了程序员追求逻辑和结构的思维:用有限的元素构建完整的系统;又展现了作家追求意象和联想的特质:通过类比和模式发现事物间的关联。

这种双重思维在其他领域也有成功的案例。Douglas Hofstadter,这位著名的认知科学家,就是将数学逻辑和艺术创造完美结合的代表。他的《哥德尔、埃舍尔、巴赫:集异璧之大成》正是用数学家的严谨和诗人的想象力,揭示了认知和创造的本质。

反观当前 Prompt 工程领域的现状,不少工程师过于强调技术层面。他们的 Prompt 往往充斥着参数和指令,就像一份详尽的技术文档。虽然这些 Prompt 也能工作,但往往缺乏灵活性和创造性。另一些人则完全依赖直觉和经验,但没有系统性思维的支撑,其 Prompt 往往缺乏稳定性和可复制性。

一个优秀的 Prompt Engineer 必须能够在这两种思维方式之间自如切换。就像一位优秀的建筑师,既要懂得力学结构,又要有艺术审美。在写 Prompt 时,既要考虑逻辑的严密性,又要注意表达的艺术性。

例如,在设计一个创意写作的 Prompt 时,工程思维能够帮助我们构建清晰的故事结构和情节发展规则,而艺术思维则能让我们设计出能激发 AI 创造力的关键词和意象。在设计一个代码生成的 Prompt 时,工程思维保证了代码的规范性和可执行性,而艺术思维则帮助我们找到最优雅的解决方案。

这就是为什么"Prompt Engineer"这个词本身就包含了深意。Engineer 暗示了严密的逻辑思维,而 Prompt 则需要艺术般的表达能力。这两种看似矛盾的特质,在优秀的 Prompt 工程师身上却能完美统一。

5.扔掉框架:真正的进阶之路

在 Prompt 圈子里,各种框架曾经风靡一时。从最早的三个字母框架,到后来的四个字母框架,再到更复杂的多步骤框架,似乎只要掌握了这些框架,就能写出好的 Prompt。

但李继刚却认为"他们跑偏了"。认知科学研究表明,框架确实存在局限性:它们往往过度简化复杂的学习过程,给人一种错误的安全感。这种过度简化会导致两个问题:一是限制了思维的发展,二是忽略了问题的本质。

就像学习任何复杂技能一样,框架只是入门的脚手架。在技能获取理论中,这被称为"支架式学习"。初学者确实需要这样的支架来避免混乱,但随着能力的提升,这些支架反而会成为束缚。

正如李继刚所说:"这些框架就像学车时的辅助轮,它能让你不翻车,但如果你想在马路上疾驰,就必须把它扔掉。"这个比喻非常贴切。辅助轮可以帮助初学者保持平衡,但也限制了更高层次的技巧学习。真正的高手早已抛开这些基础框架,形成了自己的理解和表达方式。

真正的进阶,是找到属于自己的表达方式。这需要大量的积累和思考,用李继刚的话说就是:"Read in, Prompt out."只有通过大量的阅读和思考,才能培养出真正的思维能力,才能在面对复杂问题时找到最本质的表达。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值