AI发展的五个阶段
OpenAI曾提出过AI五个发展阶段,第一阶段具备语言能力,产品多指向聊天机器人;第二阶段具备推理能力,可以帮助人类解决一定问题;第三阶段就是代理能力,开始帮助人类行动;第四阶段AI可以融入发明创造过程,第五阶段具备体系化工作能力。
第三个阶段正在逐步向我们靠近,最近Gartner十大战略技术趋势报告(2025)中着重提出未来发展较快的是‘代理型AI’,Gartner预测未来2-3年将陆续落地,到2028年,至少15%的日常工作决策将由代理型AI自主做出,而2024年这一比例还是0%。
什么是人工智能代理
简单来说,AI 代理是一种由 AI 驱动的软件,它可以为您完成一系列工作,而这些工作过去可能由人类客户服务、人力资源人员或 IT 服务台员工完成。您要求它做某事,它会为您做,有时跨越多个系统,远远超出了回答问题的范围。例如,Perplexity 上个月发布了一款帮助人们进行假日购物的 AI 代理。谷歌上周宣布了其首款 AI 代理 Project Mariner,可用于查找航班和酒店、购买家居用品、查找食谱以及执行其他任务。对国内老百姓能看到的,如智能驾驶汽车(你告诉汽车目的地,它自己可以根据路况、自己判断并决策驾驶路线、速度、避让、超车等),智能音箱可以和人自由对话,并判断你的意图执行操作等等。
人工智能代理被认为是人工智能领域的下一个重大突破,但目前尚无确切定义。到目前为止,各大机构和厂商还没有就人工智能代理的确切构成达成一致。
谷歌说:人工智能代理就是基于任务的助手,具体取决于工作:为开发人员提供编码帮助;帮助营销人员创建配色方案;通过查询日志数据协助 IT 专业人员追踪问题等等都可以称为人工智能代理。
Gartner认为:“人工智能”有两个明显特点:提供一个整体目标后,可以根据外部环境自动计划任务并执行;需要至少有记忆、计划、感知和调用工具这四大模块。
Asana 公司观点:代理可能就像一名额外的员工,像任何一位好同事一样处理分配的任务。
Sierra观点:Sierra是一家由前 Salesforce 联合首席执行官 Bret Taylor 和谷歌资深员工 Clay Bavor 创立的初创公司,它将代理视为客户体验工具,帮助人们实现远远超出过去聊天机器人的行动,以帮助解决更复杂的问题。
我认为,各厂商和机构难于达成一致的真正原因是大家对人工智能的发展阶段的定义还存在一定偏差。人工智能代理的理想情况,就是出现我们满意的智能个体,它有独立的思考、判断、行动能力,它就是一个“人”。有些公司认为达到理想状态才能称之为人工智能代理,有些人认为,只要能初步处理一些相对复杂的工作即可称为人工智能代理。
但无论如何定义,代理都是为了以自动化的方式帮助人们完成任务,尽可能减少人机交互。
长远点看,OpenAI认为人工智能发展的5个阶段,发展到第3阶段就挺好,可以不用再卷了,真等到机器可以自我复制和“繁殖”进化阶段,一切可能都变得不可控。黑客帝国时代就不会远了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。