什么是 AI Agents?:探索自主智能体的世界
人工智能(AI)的快速发展正在深刻地改变着我们的生活和工作方式。其中,AI 代理(AI Agents)作为一种新兴的智能实体,正展现出巨大的潜力。本文将深入探讨 AI 代理的定义、特性、工作原理以及它们在各个领域的应用,并比较其与另一种自动化技术——机器人流程自动化(RPA)的区别,以期帮助读者全面了解 AI 代理的世界。
AI 代理的定义与关键特征
定义:
AI 代理是一种建立在大型语言模型(LLM)之上的智能应用,它能够通过感知环境、进行规划和执行行动来实现特定目标。简单来说,AI 代理是具备自主性的智能实体,能够独立思考和调用工具来完成复杂的任务。 它们可以是虚拟的(例如聊天机器人、虚拟助手),也可以是物理的(例如机器人)[1, 4]。
关键特征:
-
自主性: AI 代理的核心特点是其自主性,它们可以在无需人为干预的情况下独立工作,专注于任务自动化和持续决策 [1, 2]。这意味着它们能够在预设目标下,自主地进行学习、调整和优化,而不仅仅是被动地执行指令。
-
感知能力: AI 代理具备通过传感器收集环境数据的能力,这使得它们能够理解周围的情况 [6, 5]。例如,一个智能家居系统中的 AI 代理可以感知温度、湿度以及光线等环境信息,并据此调整家居设备的运行状态。
-
决策与行动: 基于所收集的环境数据,AI 代理会进行推理,并采取相应的行动,以实现预定的目标 [4, 5]。它们不仅仅是简单的数据处理工具,更重要的是具备逻辑推理和自主决策的能力。
AI 代理的工作原理
AI 代理通常由三个核心组件构成,它们协同工作,使其能够有效地完成任务:
-
传感器: 这是 AI 代理感知外部世界的窗口,负责收集环境数据。例如,摄像头、麦克风、温度传感器等都可以作为 AI 代理的传感器。
-
处理器: 它是 AI 代理的“大脑”,包含用于推理和决策的算法和模型。处理器会根据传感器收集的数据进行分析,并制定行动计划。
-
执行器: 这是 AI 代理与环境互动的接口,负责执行对环境产生影响的行动 [1, 2, 6]。例如,控制机器人运动的电机、调整智能灯泡亮度的开关等都属于执行器。
例如,当用户请求外卖时,AI 代理可以自动选择餐厅、下单并支付,而无需用户逐步指导每一个操作 [2, 3]。在这个过程中,传感器感知用户的需求,处理器根据用户偏好和餐厅信息进行决策,执行器则完成下单和支付的操作。
AI Agents 与 RPA:差异与协同
AI 代理(AI Agents)和机器人流程自动化(RPA)是两种不同的自动化技术,它们在技术基础、功能、自主性以及数据处理能力等方面存在显著差异:
尽管存在差异,AI 代理和 RPA 并非互斥,而是可以协同工作。将两者结合使用,可以实现更强大的自动化解决方案。例如,AI 代理可以在需要自然语言交互时调用 RPA 执行具体操作,从而增强整体系统的智能化水平 [1, 2]。
AI 代理的广泛应用
AI 代理的应用场景非常广泛,以下是一些主要的应用领域:
- 教育:
-
个性化学习平台: AI 代理能够根据学生的学习进度和兴趣提供定制化的学习资源和辅导,从而提高学习效率 [1]。
-
智能辅导与答疑: 提供 24 小时在线答疑服务,帮助学生及时解决学习中的问题,为学生提供更及时和个性化的帮助 [1, 2]。
-
自适应测评系统: 自动批改作业和考试,并提供个性化反馈和建议,帮助学生了解自己的学习情况,并改进学习方法 [1]。
- 金融:
-
智能风控: 通过分析客户数据进行风险评估和欺诈检测,从而提升金融安全性,降低金融风险 [1, 2]。
-
客户服务: AI 代理能够处理客户查询,提供个性化的金融产品建议,提升客户体验 [2, 3]。
-
合规管理: 帮助金融机构遵守法规要求,解读政策声明以确保业务合规,降低合规风险 [1]。
- 零售与电子商务:
-
个性化购物体验: AI 代理可以分析用户行为,推荐适合的产品并提供实时促销信息,从而提高购物体验和转化率 [2, 3]。
-
客户关系管理: 通过分析客户数据,提供个性化服务和产品推荐,增强客户满意度,培养客户忠诚度 [1]。
- 制造与供应链:
-
生产线优化: AI 代理能够分析生产数据以优化流程,提高效率和资源利用率,从而降低生产成本 [1, 2]。
-
质量控制: 利用计算机视觉技术自动检测产品缺陷,确保产品质量,从而减少次品率 [1]。
- 人力资源:
-
招聘与筛选: 自动化简历筛选,通过自然语言处理技术快速识别最适合的候选人,提高招聘效率 [1, 2]。
-
员工培训与发展: 根据员工表现提供个性化培训建议,提升整体业务效率,帮助员工更好地发展 [2]。
- 网络与 IT 管理:
-
故障检测与修复: AI 代理监控网络性能,预测潜在问题并实现自动化故障修复,从而提高网络稳定性 [1, 3]。
-
网络安全: 通过实时监控和异常检测来识别和防御网络攻击,提高安全性,保护用户数据 [2, 3]。
这些应用仅仅是 AI 代理潜力的冰山一角,随着技术的不断发展,AI 代理的应用范围将会进一步扩大。
结论
AI 代理作为一种新兴的智能实体,正在各个领域展现出巨大的潜力。它们不仅能够自动化任务,更重要的是能够理解、推理和自主决策。随着 AI 技术的不断进步,AI 代理的应用将会更加广泛,为我们的生活和工作带来更多的便利和创新。理解 AI 代理的原理和应用场景,有助于我们更好地迎接这个智能化的未来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。