AI杀手级应用:Deep Research

Deep Research绝对是AI的杀手级应用。用过都说好。可惜用过的人太少,因为成本真的很高,比如OpenAI要收200美金一个月才让你用。所以,这个东西暂时还没有火出圈。如果你是职场新人,或者很想往上爬,趁着这段时间,赶紧用、赶紧学,不开玩笑。

这么说吧,但凡脑子正常的老板用过Deep Research之后,绝对会想把公司里的初级牛马全部干掉。手段不那么狠一些的,也会强制要求全员使用。然后,用不明白的都给我滚蛋。

我演示一下你们就明白了。需求很简单:帮我分析英特尔与台积电合资的可能性,以及美股投资机会。这个是最近美股投资的热门议题,我已经买入了。

接到需求后,ChatGPT会主动做一轮沟通,把需求里的细节明确一下,然后再正式开工。整个过程一般在10分钟左右,它会去查找几十个网页,然后细细地拆解。这个时候大家可以切到别的网页或者刷刷手机。

我对o1 Pro这个生成结果挺满意的,几分钟时间就完成了初步研究。试想一下,一个月1500块招个实习生帮你搜集资料,能做到这个份上,你已经可以偷笑了!

接下来,可以让这个GPT实习生根据前边的内容生成一个思维导图,这样你会有一个全局性的认识。然后,针对其中某些具体的点,再让GPT去做深度挖掘。这我就不演示了。

所以,身为打工人的各位自己掂量一下:当Deep Research全面普及之后,你们在职场当中该如何自处?

哈喽大家好,欢迎来到我的频道。谦虚地说啊,我是国内少数几个能把关于AI的Why和How讲明白的博主。我提供的东西比教程更值钱。记得点一波关注。如果想链接我,就来newtype社群。已经有800多位小伙伴付费加入啦!

回到今天的主题:Deep Research。

目前市面上提供Deep Research产品的厂商主要有三家:OpenAI、Google,以及Perplexity。接下来一定会有更多厂商加入进来。为什么?记住我这句话:

AI Search的尽头,是AI Research。

那么,不管是Search还是Research,又都是为了什么?我前两天在社群里发了这么一段话,我认为:

AI会沿着两条线发展:掌握更多信息,控制更多工具。

其中,搜索、深度研究都是第一条线的关键节点。这是为什么各家都很重视的原因。

动作最快的OpenAI已经把这个产品开放给Pro用户好一段时间了。这一档的月费是200美金,每个月可以用100次的Deep Research。Plus和免费版的用户也别着急,Sam说了,将会向Plus版用户提供每个月10次的额度,免费版用户则是2次。

实话实说,OpenAI的Deep Research是目前效果最好的产品。它不是简单地搜一堆网页,把内容拿回来分析。而是用了大量的模型协作。所以,消耗的Token比别家多太多。它产出的报告,信息密度也是别家的好几倍。不信的话,你去部署那些开源的、所谓的替代品试试就知道了。

但是,很可惜,我不会继续订阅。不是产品的问题,而是降智的问题。

很多人都遇到了降智,特别恶心。这个问题并不是无解。比如,你可以再花一点点钱去搞个静态IP伪装一下。可以是可以,只是那种被歧视的感觉让我非常不爽。我给的美元就不是美元吗?

而且,抛开这些情绪,我判断,这类型产品在三个月内一定会快速普及,成为20美金的标配。

这么考虑下来,我还是会把Gemini当做主力。性能不错,稳定,不恶心人。

我每个月20美金订阅Gemini Advanced,这其中就包括Deep Research的使用权限。这个使用也是有限额的,不过Google没明说,估计是根据用户的使用量来动态调整,满了会提示。

我给大家看一下Gemini这边的效果。跟ChatGPT一样,接到需求后,不会马上开始,而是先做一轮分析,拟定一个方案,跟用户确认好了之后才开工。接着,在几分钟内,它会查找几十甚至上百个网页,直到掌握足够的信息。最后,按照报告的格式进行输出。

没记错的话,Gemini的Deep Research是在1.5的阶段推出的,所以现在是1.5 Pro这个模型,还没更新到2.0。所以,在结果上肯定不如OpenAI那边。但是我相信,等用上Gemini 2.0模型之后,两边的效果一定会齐平。而且,Gemini大概率会提供更多的额度。一是因为搜索上的积累,二是因为Google有TPU。对OpenAI来说,成本才是他们最大的障碍。

OK,ChatGPT和Gemini都聊完了,咱们最后来看看Perplexity。他们是最狠的,给Pro用户每天500次额度,免费用户每天5次。虽然便宜,但是效果也比较一般。

不客气地说:这不是Deep Research,而是Deep Search。

反正我日常都高频使用Perplexity。现在多了一个量大管饱的Deep Search,不用白不用。

接下来,所有人都会说自己的产品是Deep Research。但有多少能真的达到Research的程度,大家在用的时候记得仔细辨别。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值