今天分享一篇伊利诺伊大学的文章,标题为:Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning(Search-R1:利用强化学习训练LLM进行推理并利用搜索引擎)。
这篇文章是关于如何训练大型语言模型(LLMs)有效地利用搜索引擎来增强其推理和文本生成能力。论文提出了一个名为SEARCH-R1的框架,该框架仅仅通过强化学习(RL)让LLM学习如何在逐步推理过程中自主生成搜索查询并与实时检索交互。
该方法特点总结如下:1)使用检索token mask技术稳定RL训练,2)支持多轮交错推理和搜索,以支持复杂的任务解决,3)设计了一个简单而有效的基于结果的奖励函数。通过在七个问答数据集上的实验,SEARCH-R1在三个LLM上实现了相对于SOTA基线的显著性能提升。
一、概述
- Title: Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
- URL: https://arxiv.org/abs/2503.09516v1
- Authors: Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, Jiawei Han
- Institutions: University of Illinois at Urbana-Champaign, University of Massachusetts Amherst
- Code: https://github.com/PeterGriffinJin/Search-R1
1 Motivation
- 大型语言模型(LLMs)在复杂推理和从外部来源检索最新信息方面面临挑战(LLM非常吃外部的检索知识)。
- 现有的LLM与搜索引擎集成方法缺乏复杂的多轮检索 灵活性或需要大规模的监督数据 。
- 提示工程方法在推理时利用LLM来使用搜索引擎并不理想,因为LLM没有学会如何以最佳方式与搜索引擎交互。
- 总结:Å(将DeepSeek R1的强化学习方法用于Search链路还没人做过!!! )
2 Methods
SEARCH-R1通过强化学习让LLM在推理时与搜索进行交互。 将搜索作为环境的一部分,采用 multi-turn 检索,并用简单的 outcome-based reward。 在多个问答数据集上效果显著。
详细方法和步骤:
论文提出了一种新的强化学习框架SEARCH-R1,使LLM能够以交错的方式与搜索引擎进行交互。具体步骤如下:
- 将搜索引擎建模为环境的一部分: SEARCH-R1将搜索引起作为环境的一部分, 让模型与环境交互,从而得到 reward。
- 支持多轮检索和推理: SEARCH-R1通过特定的标签(
,
,,
,,
,,
)来支持多轮检索和推理。 - 采用 retrieved token masking: 为了稳定优化,SEARCH-R1采用 retrieved token masking, 只对LLM生成的 token 进行优化,检索的内容不参与优化。
- 优化算法兼容性: SEARCH-R1 与各种 RL 算法兼容,包括 PPO 和 GRPO。
- 简单结果奖励函数: 避免复杂的基于过程的奖励, 采用简单的基于结果的奖励函数 (字符串匹配作为reward!!!)。
3 Conclusion
- SEARCH-R1在七个问答数据集上实现了显著的性能提升,平均相对提升达到26%(Qwen2.5-7B)、21%(Qwen2.5-3B)和10%(LLaMA3.2-3B)。
- SEARCH-R1可以成功应用于基础模型和指令调整模型,并且在不同的LLM架构中具有通用性。
- 论文还深入分析了RL训练策略,包括RL方法选择、LLM选择和响应长度动态,为未来研究提供了有价值的见解。
4 Limitation
-
奖励机制的设计相对简单,仅依赖于最终结果的评估,可能无法充分捕捉到中间推理步骤的质量。
-
动态检索调整,基于不确定性的动态检索调整,需要进一步探索。
详细内容
1 SEARCH-R1 在多个数据集上始终优于baseline,包括 Qwen2.5-7B、Qwen2.5-3B 和 LLaMA3.2-3B
2 不同RL方法在不同基座模型上的影响
说明:展示了在四个 LLM 上使用 PPO 和 GRPO 作为基础 RL 方法训练 SEARCH-R1 的动态过程。
总结1:GRPO 通常收敛速度更快,但在某些情况下可能表现出不稳定性,而 PPO 提供了更稳定的优化,但收敛速度较慢。
总结2: GRPO 在训练 LLAMA3.2-3B-Instruct 模型时出现了奖励崩溃现象,而 PPO 在不同的 LLM 架构中保持稳定。
3 SEARCH-R1 在base model和instruct model的表现对比
总结1:指令模型收敛速度更快,并且初始性能更好,但两种模型的最终性能非常相似。
总结2:Instruction Tuning 加速了学习过程,但最终性能与基础模型相当。
4 检索token损失mask对效果提升非常大
总结1:(a) 响应长度在整个训练过程中呈现先减少、后增加、再稳定的趋势,与 LLM 的整体性能轨迹一致。
总结2:(b) 展示了检索到的 token 损失遮蔽研究,检索 token 损失遮蔽可以带来更大的 LLM 效果提升,减轻发生意外的优化效果,并确保更稳定的训练动态。
4 在七个不同数据集上使用 PPO 和 GRPO 的 SEARCH-R1 的性能对比
总结1:GRPO 通常优于 PPO,并且指令model优于base model。
总结2: Qwen2.5-3B 的最佳配置是 SEARCH-R1-Instruct (GRPO),平均得分为 0.365。LLaMA3.2-3B 的最佳配置是 SEARCH-R1-Base (GRPO),平均得分为 0.324。
9 Case Study: Search-R1能持续与真实数据进行交互
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。