ViDoRAG:提升视觉RAG性能10%

一、为什么需要 ViDoRAG 技术?

null

1.1 视觉文档的复杂性

在信息爆炸的时代,视觉文档(如包含图表、表格、图像的文件)在教育、金融、法律等多个领域广泛应用。这些文档不仅包含文本信息,还通过视觉元素传递关键信息。然而,传统的检索增强生成(Retrieval-Augmented Generation, RAG)方法在处理这些视觉文档时面临巨大挑战,因为它们难以有效整合文本和视觉特征。例如,一份金融报告可能包含复杂的图表和表格,传统的 RAG 系统只能提取文本信息,而忽略了图表中的关键数据,导致信息不完整。

1.2 现有方法的局限性

现有的视觉问答(Visual Question Answering, VQA)基准主要针对单一图像或文档,无法应对大规模文档集合中的复杂推理任务。例如,传统的 VQA 数据集通常要求每个问题与特定的图像或文档配对,但在实际应用中,用户可能需要从数百个文档中检索信息。此外,传统的 OCR(光学字符识别)检索方法在处理视觉信息时表现不佳,导致检索结果不准确。例如,OCR 可能无法正确识别图表中的数字或符号,从而影响后续的推理和生成。

1.3 ViDoRAG 的诞生

为了填补这一空白,ViDoRAG 应运而生。它通过多模态检索和迭代推理代理,显著提升了视觉文档的检索和生成能力,为复杂推理任务提供了全新的解决方案。例如,ViDoRAG 在处理一份包含多个图表的学术论文时,能够同时提取文本和图表中的信息,并通过迭代推理生成准确的答案。这种创新方法不仅提高了信息检索的准确性,还增强了生成模型在处理复杂视觉文档时的推理能力。

二、ViDoRAG 技术架构

null

2.1 多模态混合检索

ViDoRAG 的核心创新之一是多模态混合检索策略。它结合了文本和视觉两种检索管道,通过高斯混合模型(Gaussian Mixture Model, GMM)动态调整检索结果分布。这种方法能够为每个查询找到最优的检索分布,从而减少不必要的计算,提升生成效率。

在传统的检索方法中,通常会使用一个固定的参数 K 来检索最相关的 K 个图像或文本片段。然而,这种方法存在两个问题:

  • 一是 K 值过小可能导致检索到的信息不足,无法准确回答问题;
  • 二是 K 值过大会引入噪声,增加计算开销。

ViDoRAG 通过 GMM 模型动态调整 K 值,根据查询与文档集合的相似度分布,自动确定最佳的 K 值。

GMM 模型将相似度分布分为两个高斯分布,分别代表高相似度和低相似度的文档。通过期望最大化(Expectation-Maximization, EM)算法,GMM 模型能够估计每个模态的先验概率,从而动态调整 K 值。

这种动态调整策略不仅提高了检索的准确性,还显著减少了计算开销。实验表明,ViDoRAG 在检索任务中的表现优于传统的固定 K 值方法,尤其是在处理大规模文档集合时,能够更高效地找到相关信息。

2.2 迭代推理代理

ViDoRAG 引入了三种智能体:搜索智能体(Seeker Agent)、审查智能体(Inspector Agent)和回答智能体(Answer Agent)。这种多智能体框架通过迭代推理的方式,逐步优化答案的生成过程,减少了无关信息的干扰,提升了推理的鲁棒性。

  • 搜索智能体(Seeker Agent):负责快速扫描文档并选择相关图像。它根据查询和审查代理的反馈,逐步缩小检索范围,确保每次迭代都能找到更相关的信息。
  • 审查智能体(Inspector Agent):则对搜索代理选择的图像进行详细审查,并提供初步答案或反馈。如果当前信息不足以回答问题,审查代理会指导搜索代理进一步检索相关图像。
  • 回答智能体(Answer Agent):负责整合审查代理的初步答案,并生成最终的答案。

这种迭代推理的框架不仅提高了答案的准确性,还增强了模型在处理复杂查询时的鲁棒性。实验表明,ViDoRAG 在复杂推理任务中的表现显著优于传统的单步推理方法。

2.3 开源资源

ViDoRAG 的代码和数据集已在 GitHub 上开源,地址为:https://github.com/Alibaba-NLP/ViDoRAG。

null

下图为数据集构建流程:

null

三、ViDoRAG 的应用与效果评估

3.1 性能提升

null

在闭源和开源模型上进行了对比,包括 GPT-4o、Qwen2.5-7B-Instruct、Qwen2.5-VL-7B-Instruct 和 Llama3.2-Vision-90B-Instruct。

  • 闭源模型表现优于开源模型。
  • Qwen2.5-VL-7B 在 ViDoRAG 中展示了出色的指令跟随和推理能力。
  • Llama3.2-VL 需要 90B 参数才能完成相同的指令,可能与模型的预训练领域有关。

3.2 检索效率

null

注:

Recall@K 表示在前 K 个检索结果中,系统成功检索到正确答案的比例。

MRR@K 是衡量系统检索到正确答案的平均排名的倒数。

上图各种检索器的详细性能,包括基于 OCR 和基于视觉的检索器。由于动态检索在查询之间存在不确定性,使用结果的平均长度进行分析。

动态检索可以在较短的上下文长度下实现更好的召回性能,而混合检索结合了两个管道的结果,达到了最先进的性能。

3.3 消融实验

null

上表展示了不同检索器和生成方法对性能的影响。将动态检索分解为两个部分:动态和混合。Naive 方法指直接输入,作为基线使用。

  • 动态方法指仅基于视觉管道使用 GMM 拟合最佳召回分布。
  • 混合方法指直接合并视觉和文本检索结果,由于上下文较长,导致次优结果。

上述结果表明:ViDoRAG在检索和生成模块上的改进及其组合能够从多个角度全面提升端到端性能。

3.4 时间效率

3.4.1 动态检索如何平衡延迟与准确性?

在传统的 RAG 系统中,使用较小的 top-K 值可能导致遗漏关键信息,而使用较大的值则会引入噪声并增加计算开销。

ViDoRAG 根据查询与语料库之间的相似度分布动态确定要检索的文档数量,确保仅检索最相关的文档,从而减少不必要的计算并加速生成过程。

null

如上表,比较了使用和不使用 GMM 的检索方法。实验表明,GMM 可能会由于分布偏差而降低召回率,但由于显著缩短了生成上下文,因此在端到端评估中有效提升了性能。

3.4.2 多代理生成的延迟分析

null

由于多智能体系统的迭代性质,延迟有所增加,如上图所示。每个智能体按顺序执行特定任务,与传统直接 RAG 相比增加了少量开销。然而,尽管延迟增加,生成答案的质量提高使得在复杂 RAG 任务中这种权衡非常有益

3.5 生成的多模态与策略

null

如上图所示,基于视觉的Pipeline 在所有类型的查询中均优于基于文本的 Pipeline。

由于模型的固有特性,LLM 的推理能力比 VLM 更强。然而,缺乏视觉信息使得模型难以识别信息之间的内在联系。这也对基于视觉丰富文档的生成提出了挑战。在获取视觉信息的同时,ViDoRAG 进一步增强了 VLM 的推理能力,在准确性和计算负载之间取得了平衡。

3.6 测试时扩展的性能

null

上图展示了 ViDoRAG 中 Seeker 和 Inspector 之间的交互轮次。

性能较强的模型需要较少的推理迭代,而较弱的模型通常需要更多时间来处理并得出结论。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何将RAG模型的F1分数提高10% 为了显著提升RAG模型的F1分数,可以采取多种策略和技术手段。以下是具体的方法: #### 改善检索质量 增强检索阶段的效果对于整体性能至关重要。可以通过改进查询表示学习、优化索引结构以及采用更高效的匹配算法来实现这一目标。例如,在构建索引时考虑更多的上下文信息,从而使得文档片段能够更好地反映其语义特征[^3]。 #### 调整生成组件 针对生成部分,调整超参数设置如温度系数或长度惩罚因子有助于获得更加精准的回答。此外,还可以尝试微调预训练的语言模型以适应特定的任务需求,这通常能带来明显的性能增益[^2]。 #### 数据扩增与清洗 扩充高质量的数据集不仅可以直接用于监督式训练,也可以作为无标签样本参与半监督学习过程。同时去除噪声较大的实例可减少干扰项对模型决策造成负面影响的可能性。创建合成数据也是一种有效的方式,这种方法已经被证明可以在某些情况下帮助改善系统的泛化能力。 #### 多模态融合 如果应用场景允许的话,引入图像或其他形式的多媒体资源可能会进一步加强理解力并促进更好的表达效果。多源异构的信息输入往往能使最终输出更为丰富详实[^1]。 ```python def optimize_rag_model(model, dataset): """ Optimize the given RAG model using various techniques to improve F1 score. Args: model (object): The RAG model instance that needs optimization. dataset (list of dict): Training data used for fine-tuning and evaluation. Returns: object: Optimized RAG model with improved performance metrics including higher F1 scores. """ # Implement advanced retrieval strategies here... # Fine tune language generation component based on task-specific requirements # Expand training set by generating synthetic examples or collecting additional relevant documents return optimized_model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值