在当今数字化信息爆炸的时代,RAG(检索增强生成)知识库问答系统在各个领域发挥着至关重要的作用,而 DeepSeek QwQ32B 更是备受关注。如何进一步提升其问答准确率,成为众多技术爱好者和专业人士热议的焦点。今天,就让我们一同深入探究其中的奥秘。
一、数据预处理优化(适配 DS/QWQ 特性)
-
分块策略定制化
-
DS 适配:对于像 SD - WAN 配置手册这类技术文档,采用语义分块与递归分块相结合的方式堪称一绝。先按照章节进行递归分块,这就如同将一座知识大厦按楼层划分,初步构建起清晰的框架。再借助余弦相似度检测语义边界,就好比精确测量每层楼不同区域的功能边界,让知识模块划分得更加精准。实验数据显示,当 DS 在 512 tokens 分块时,召回率显著提升 12%,这意味着能更有效地从海量知识中召回相关信息。
2. QWQ 优化:面对结构化数据,如 Excel 表格,采用固定分块(256 tokens)并加上 20% 重叠的策略,就像给知识拼图设定了合适的小块尺寸且保证了部分重叠,避免切断字段关联。同时添加列名作为元数据标签,就如同给拼图的每一块都贴上了说明标签,让后续处理更加清晰明了。在处理非语义编号方面,QWQ 在 256 tokens 时效果更佳,为准确检索奠定基础。 -
文件格式与 OCR 处理
-
- 格式选择:优先使用 MD/HTML 格式,这两种格式就像知识的清晰书架,其结构和格式便于系统快速理解和处理。而对于扫描 PDF,就如同蒙上灰尘的旧书,需通过 Umi - OCR 预处理,经此处理后,准确率能提升 35%,宛如给旧书重新整理、清晰排版。
- 数据转换:Excel 等结构化数据转换为键值对文本(如 {“字段”:“值”}),这一操作如同将复杂的立体结构知识转化为简单有序的线性排列,有效避免向量化失真,确保知识在转化过程中不丢失关键信息。
二、检索策略增强(混合模型支持)
-
DS**/QWQ 多路召回机制**通过 DS 多模型并行示例来看,ds_vector 基于 bge - large 微调的向量模型,如同一位敏锐的语义猎手,在语义关联场景(如技术概念解释)中表现突出,测试显示首条命中率达 83%,能迅速精准地捕捉到语义相关信息。而 qwq_keyword 采用 BM25 算法,在精确匹配场景(如法规条文编号)采用全文检索模式,恰似一把精确的手术刀,准确率比纯向量高 29%。将两者结合,通过权重调整(如 0.7ds_vector + 0.3qwq_keyword ,当然权重需 AB 测试调整),实现优势互补,让检索更加全面准确。
-
动态参数****调整
-
- 查询类型识别:借助 DS 分类模型自动判断问题类型,是语义类还是精确匹配类,就像给问题贴上不同的标签,然后动态切换检索模式,确保每个问题都能找到最适合的检索路径,提高检索效率。
- 分片权重策略:对于长文档,采用头部 80% 内容权重系数 1.2,尾部 20% 系数 0.8 的策略,就像给知识的重要部分加上了放大镜,让关键信息更加突出,缓解信息稀释问题,让重要知识不被海量内容淹没。
三、模型优化方案
-
领域微调实践
-
- DS 模型:使用 LoRA 在专业语料(如法律条文)进行微调,这就像给模型进行专业领域的特训,使其更适应特定领域知识。微调后,MRR@5 从 0.41 提升至 0.63,意味着模型在特定领域的检索排名效果大幅提升,能为用户提供更优质的答案。
- QWQ 模型:建议采用对比学习训练,增强对非连续文本(如表格数据)的编码能力,如同训练模型具备更强大的拼图能力,能将看似零散的表格数据整合并准确理解。
-
蒸馏与模块化
-
- DS 模型:将 DS 核心知识蒸馏为小型专家模型(如医疗、法律模块),这就像将庞大的知识体系提炼成各个专业小秘籍,推理速度提升 3 倍,在专业领域的应用更加高效快捷。
- QWQ 模型:通过分层检索架构,首层轻量模型粗筛,如同先进行大面积的初步搜索,二层精细模型重排序,就像对初步搜索结果进行精细筛选,让检索结果更加准确可靠。
四、工程优化实践
-
索引加速方案不同的索引类型适用于不同场景。HNSW32,对于 DS 而言,适用于高召回率需求(>98%)场景,就像一个强大的知识吸尘器,能尽可能多地收集相关知识;对于 QWQ,适用于低内存环境(<4GB),在资源有限的情况下依然能高效工作。IVFPQ,DS 适用于千万级数据量,如同能应对海量知识仓库的超级管理员;QWQ 适用于实时性要求高(P95<50ms)场景,能快速响应需求。测试显示 DS 在 HNSW32 下响应延迟降低 42%,大大提升了系统的响应速度。
-
缓存策略
-
- DS 缓存:热点查询(如高频政策条款)预计算 DS 向量并存入 Redis,命中时直接调用,延迟从 120ms→15ms,就像在知识宝库中为常用知识设置了快速通道,让常用知识能迅速被获取。
- QWQ 缓存:QWQ 采用查询模式缓存,对 “XX 法规第 N 条” 类问题建立正则表达式缓存池,如同为特定类型的问题准备了专属的快速检索通道,提高检索效率。
五、评估与迭代机制
-
测试基准构建构建三元组测试集:(问题,正样本 ID, 负样本 ID),需覆盖 DS/QWQ 的典型错误案例(如编号混淆、多义词歧义)。这就像给模型的学习过程准备了一套全面的错题集,让模型能针对性地学习和改进。
-
关键指标
-
- DS 指标:DS 的 MAP@10 需>0.68 ,这是衡量 DS 模型在检索结果准确性和相关性方面的重要指标,确保模型能提供高质量的答案。
- QWQ 指标:QWQ 的精确匹配准确率需>92%,保证了 QWQ 在精确匹配场景下的可靠性。
-
持续学习流程从用户反馈日志出发,进行错误类型分析。如果是语义错误,就更新 DS 微调数据,如同给 DS 模型补充新的知识养分;若是精确匹配错误,就优化 QWQ 检索规则,完善 QWQ 的检索策略。DS 通过月度增量训练不断进化,QWQ 则实时规则热更新,确保系统始终保持最佳运行状态。
六、典型问题解决方案
以 Excel 数据检索不准为例,其问题根因在于结构化数据在 DS 向量空间中的映射失真,以及 QWQ 的全文检索对字段边界识别误差。解决方案也颇具针对性,预处理时将 Excel 转换为字段:值文本,添加 ## 表名等标记,为数据标注清晰的身份信息;DS 优化采用字段值对单独编码(如 ORG_CODE:52440306),让数据在 DS 模型中有更准确的表达;QWQ 优化建立精确匹配规则库,对特定字段(如信用代码)启用正则表达式检索,提高 QWQ 检索的精准度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。