这篇题为《人工智能在医院和诊所中的作用:21世纪的医疗转型》的综述文章,深入探讨了人工智能 (AI) 如何在医疗保健领域发挥着越来越重要的作用,并分析了其对医院和诊所的具体影响。文章从人工智能在临床决策、医院运营、医疗诊断、患者治疗和护理等方面的应用入手,且探讨了人工智能应用中所面临的伦理挑战和未来发展趋势。
1、人工智能在临床决策中的作用
文章首先介绍了人工智能在临床决策中的应用,包括诊断和预后。通过分析大量医疗数据,人工智能算法能够识别出人类分析可能忽略的范式和相关性,从而帮助医生做出更准确的诊断和制定更有效的治疗方案。
1.1.人工智能算法在诊断和预后中的应用
文章介绍了机器学习、深度学习和自然语言处理等人工智能算法在医疗诊断和预后中的应用。机器学习算法可以从数据中学习,并根据历史数据预测患者的预后。深度学习算法利用多层神经网络分析复杂的数据结构,特别适合处理医学影像数据,例如X光片或MRI图像。自然语言处理算法可以理解和解释人类语言,可以从非结构化数据源(如临床记录或研究文献)中提取有意义的信息,帮助诊断和预后。
1.2.人工智能在疾病检测中的案例分析
文章通过多个案例分析展示了人工智能在疾病检测中的应用潜力,包括癌症检测、糖尿病管理、心脏病预测和神经疾病诊断等。例如,在癌症检测中,人工智能算法可以通过分析乳腺X光片识别出癌变迹象,准确率甚至超过了人类放射科医师。在糖尿病管理中,人工智能算法可以分析患者数据,预测糖尿病的发生和发展,并预测并发症。
1.3. 人工智能在个性化医疗中的作用
文章强调了人工智能在个性化医疗中的作用,包括根据基因信息定制治疗方案和预测药物开发。人工智能算法可以分析基因组数据,识别出可能影响患者对特定治疗反应的突变和变异,从而为患者制定更有效的治疗方案。在药物开发方面,人工智能算法可以分析临床试验和患者记录的历史数据,预测不同患者对药物的反应,帮助设计更有效的临床试验,开发针对特定患者群体的药物。
2、人工智能在医院运营和管理中的作用
文章还探讨了人工智能在医院运营和管理中的应用,包括优化物流、简化行政后勤任务、改善患者流动性和排班效率等。人工智能算法可以分析医院数据,识别出运营瓶颈和效率低下之处,并制定更有效的管理方案。
3、人工智能在医疗影像和诊断中的作用
文章重点介绍了人工智能在医疗影像和诊断中的应用,包括提高放射学和病理学图像分析的准确性和效率。人工智能算法可以识别出图像中的病变,帮助医生做出更准确的诊断,并提高诊断效率。
4、人工智能在患者治疗、护理和监测中的作用
文章探讨了人工智能在患者治疗、护理和监测中的应用,包括人工智能驱动的可穿戴设备、虚拟护理助手和远程医疗的扩展。人工智能算法可以收集患者的生理数据,监测患者的健康状况,并提供个性化的治疗和护理建议。
5、人工智能在医疗保健中的伦理挑战
文章还探讨了人工智能在医疗保健中所面临的伦理挑战,包括数据隐私、算法透明度和公平获取等问题。文章强调了需要制定相应的伦理规范和法律法规,确保人工智能的负责任使用。
6、人工智能在医疗保健中的未来发展趋势
文章最后展望了人工智能在医疗保健中的未来发展趋势,包括改善患者预后、应对全球健康危机等。文章认为,人工智能将继续在医疗保健领域发挥重要作用,并推动医疗保健的进步。
总之,人工智能正在改变医疗保健领域,并为医院和诊所带来了巨大的机遇和挑战。通过深入理解人工智能的应用潜力和伦理挑战,我们可以更好地利用人工智能技术,改善医疗保健服务,改善患者预后,并推动医疗保健的进步。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。