根据联合国数据,65 岁以上人口预计从 2022 年的 10% 增至 2050 年的 16%。人口老龄化对医疗系统造成巨大压力,现有资源和护理模式难以应对快速增长的老年人口。
而在老年人群体中,又更容易患相关慢性非传染性疾病,比如糖尿病、心血管疾病和阿尔茨海默病。并且共病情况进一步增加了对老年人护理的复杂性,这对医疗保健系统提出了更高的要求。
而传统的医疗模式依赖于门诊和实验室测试,既费时又昂贵,难以满足日益增长的医疗需求。
而数字健康技术(尤其是可穿戴设备)的发展为解决老龄化社会的健康挑战提供机会,通过远程、持续的监测和个性化管理,可以减轻医疗系统的负担,同时提升老年人在家中的独立性和安全性。
监测老年健康的关键数据
老年人健康监测的数据主要包括两大类:生理数据和化学数据。这些健康数据信号与老年人常见疾病密切相关。
其中生理数据涵盖了心率、呼吸频率、血压、血氧饱和度等常规体征,以及步态、震颤等反映身体机能的指标。而化学数据则包括葡萄糖、皮质醇、电解质等体液标志物。
数字健康技术的发展推动了健康监测技术的进步,例如,可穿戴设备通过实时监测生理参数有助于早期检测心血管疾病;连续血糖监测技术在糖尿病管理中表现出潜力,可有效减少低血糖和高血糖风险。
甚至已经有研究人员正在开发可穿戴化学传感器,用于汗液中多种生化指标的监测,包括葡萄糖、乳酸和尿酸。
未来的健康监测系统
理想的健康监测平台通过整个多种技术和设备,构建"端-管-云"一体化解决方法:
其中可穿戴设备如智能手表、皮肤贴片等,可以持续采集生理和活动数据,覆盖用户的生理和行为监测;非穿戴设备如家庭传感器,可以监测老人的居家行为和环境安全;云计算和 AI 技术则用于处理和分析海量的多维度数据,从而实现健康状态评估和异常预警。
这套"端-管-云"一体化的解决方案,极大程度提升了老年护理的效率和质量,在老年护理中的应用有着巨大的潜力:
-
可穿戴设备在康复和疾病管理中的应用可能减少医疗负担
-
美国一个社区的试点研究表明,非穿戴传感器有助于提升老年人的安全感,并提高他们对居家养老的接受度
-
机器学习算法能够基于活动数据预测跌倒风险,为预防措施提供相应支持
实际应用中的场景和效果验证
针对老年人健康管理的不同侧重点,以上技术在实际应用中的场景主要包括:
-
日常健康监测
在日常健康监测方面,可穿戴设备如智能手表和皮肤贴片能够持续跟踪老人的生命体征和活动状态,如心率、步态、睡眠等。这些数据可帮助评估总体健康水平,并早期发现潜在风险。
已经有相当多的研究证实了步态监测对老年人的健康管理具有重要意义。传感器技术已被用于检测步态变化并预测跌倒风险,长期数据分析可能为认知下降等问题提供预警。
而 UKB 数据库中的加速度计正是可以作为这类研究的基础要素存在。
-
特定疾病管理
智能血糖仪和连续血糖监测系统(CGM)已广泛应用于糖尿病患者的日常管理。这些设备通过持续跟踪血糖水平,帮助患者优化饮食、运动和药物方案,降低并发症风险。
-
紧急事件响应
以跌倒为例,这是老年人伤残和死亡的主要原因。可穿戴传感器和家居监控系统可以检测跌倒或心脏骤停等紧急事件,并自动触发报警系统。智能跌倒检测系统已显示出改善救助时间的潜力,从而提升跌倒事件后的预后效果。
类似对心脏骤停等极端事件,穿戴式心电监护也能起到一定预警和急救的作用。
尽管老年人对智能设备的使用存在学习曲线,但研究表明,大多数老年人能够逐渐适应,并认为设备有助于管理健康。
思路发散:UKB能做什么
UKB 数据的广泛性(遗传、环境、行为和健康记录的整合)使其在推动健康老龄化研究方面具有独特优势。
促进精准医疗
UKB 的数据整合了丰富的遗传信息、生物标志物和健康记录,与实时活动跟踪(如加速度计数据)相结合,能够为健康老龄化领域的精准医疗提供支持。
通过整合这些多维数据,研究人员可以更好地理解疾病发生、发展和预防的机制。
探索基因与行为和环境的交互作用
利用 UKB 的基因数据和动态行为数据,可以识别以往未被发现的疾病风险因子,进一步研究基因如何通过行为和环境因素影响疾病的发生机制。例如,行为数据与特定基因变异的交互分析可为复杂疾病的精准干预提供新的研究方向。
数字生物标记验证
UKB 内嵌套的加速度计子队列提供了动态行为数据,这些数据可以与传统测量方法进行比较,从而验证数字生物标记的可靠性和准确性。
这一过程为数字端点,如活动水平、睡眠模式,在临床研究和转化医学中的应用提供高质量的证据支持。
动态疾病预测与风险分析
借助 UKB 的大规模加速度计时间序列数据,可以构建动态疾病预测和风险分析的机器学习(ML)模型。
这些模型结合基因组学、生物标志物等多组学数据,有助于实现精准的健康管理和疾病的早期干预。例如,通过对动态行为数据的建模,可以开发个性化的风险评估工具,优化老年群体的健康干预策略。
UKB 的动态数据结合多组学分析,不仅能推动疾病预防研究,还能支持数字健康技术在临床实践中的标准化应用。
未来的挑战
数字健康技术虽然在研究和应用层面取得了显著进展,但要真正实现其潜在价值,仍需要克服一些关键挑战。
大规模临床验证的重要性
当前,许多数字健康技术(如智能手表的心率监测功能)已被纳入大规模临床研究。例如, Apple 公司与多家医疗机构合作,在百万级用户中评估其设备在心房颤动筛查中的效果。
这种大规模验证是数字健康技术进入主流医疗体系的重要一步。
数据安全与隐私保护
数据安全和隐私问题是技术应用中的主要障碍。尤其对于老年群体而言,由于数字素养普遍较低,使用新技术的能力较弱,开发用户友好的设备和建立多层次的数据保护机制显得尤为重要。这不仅是技术问题,也是建立用户信任的关键。
政策扶持与成本问题
目前许多健康监测设备仍属自费项目,其高昂的价格对许多老年人来说是显著的经济障碍。政策层面的支持(如将健康监测设备纳入医保体系)对于推动技术普及和降低应用门槛至关重要。
展望
尽管存在诸多挑战,可穿戴设备及相关技术已经在疾病早期干预、慢性病管理和改善生活质量方面展现了巨大潜力。
随着物联网(IoT)、大数据分析和人工智能等技术的进一步发展,数字健康有望在不远的将来成为现实,成为应对老龄化社会挑战的创新解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。