必看!8种Self-Reflection策略,提升Agent97%

为什么要让Agent学会反思

我们可以通过回答以下3个子问题,来理解上面这个问题。

第一、为什么要让LLM学会反思?

  • 众所周知,无论用多大规模的LLM,都无法消除幻觉。

  • 大量研究证明,从人类思考的模式中得到启发,引入Cot(思维链)提示,在各种问题解决任务中显着提高了 LLM 性能。 但是,仍然经常会因逻辑错误、数学错误、幻觉等原因而出现错误。

  • 因此,在思维链中加入人类的反思模式,即带有自我反思(Self-Reflection)能力的Cot,能够识别错误,解释这些错误的原因,并生成建议,以避免将来犯类似类型的错误。

第二、为什么要给Agent配置自我反思的Cot?

  • Agent最突出的表现是,在解决多步问题方面非常厉害。例如:网络浏览器、搜索引擎、代码解释器等。都需要多次请求LLM完成上述任务,这就是Agent的强项

  • 没有自我反思能力的Agent,推理时会出错,输出幻觉,并陷入无用的循环。

  • 自我反思型Agent,恰好能借助Cot、外部知识、以及从反馈中学习的能力,提高Agent的准确率

第三、有人会问什么是反馈学习?

反馈学习包含3个部分:

  • 反馈的来源:包括内部反馈和外部反馈。即LLM本身的先验知识,和外部数据库中存储的知识

  • 反馈的类型:包括标量值和自然语言。例如:问珠穆朗玛峰的高度,就是一个标量。问珠穆朗玛峰的地理位置,就是一个自然语言的描述。

  • 反馈学习的策略:反馈学习的策略可以在模型训练时、输出生成时或输出生成后出现。在这三个阶段中的每一个阶段,都有各种可用的技术(例如,模型微调、输出重新排序和自我纠正)

模型微调、输出重新排序,大家都不陌生。 自我纠正就是让Agent在信息交换的过程中,逐步纠正幻觉的输出。目前自我纠正的方法包括3种类型:

  • 迭代细化

  • 多模型辩论

  • 自我反省

前两个侧重点在模型本身,自我反省则强调的是知识的纠偏,也是我们今天要重点介绍的内容。

让Agent通过反思纠偏,就能极大的缓解Agent的幻觉问题,提高准确率。

Self-Reflection(自我反思)

Agent中的自我反省是一种元认知策略,使用自我反省的 LLM 能够识别并纠正其错误,即使LLM无法识别Cot中的推理错误,借助外部反馈的知识仍然能纠正错误。

自我反思流程图和算法

8种Self-Reflection的策略

  • Retry : 被告知回答错误,并简单地再次尝试。

  • Keywords : 每种错误类型的一组关键字。

  • Advice: 一组用于改进的一般建议。

  • Explanation :对其出错原因的解释。

  • Instructions: 用于解决问题的指令的有序列表。

  • Solution: 针对问题的逐步解决方案。

  • Composite : 混合所有六种类型的自我反思,反思时不保留中间答案。

  • Unredacted: 混合所有六种类型,自我反思时保留各自的答案作为中间结果。

看一下这八种策略的效果 其中,Baseline是没有自我反思的Agent,作为对照。

Unredacted策略达到了97%的准确率。说明,当 LLM 在自我反思中获得正确答案并保留为中间推理结果时,它能以较高的准确率回答问题。

还测试了不同LLM下,8种策略的不同表现。 很明显,Unredacted策略依然表现最好。

最后,测试了不同考试类型(不同程度的分析推理的考试),来观测一下自我反思带来的改进情况。 其中,LSAT-AR(分析推理)改进最大,SAT(英语考试)改进最小。说明,越是强调分析推理的问题,自我反思(Self-Reflection)的改进效果越好。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值