本期推文的内容概要
在工业设备运行过程中,机械故障的诊断一直是工程师们面临的重大挑战。尤其是在复杂、恶劣的工作环境下,故障信息往往被噪声淹没,传统的单传感器诊断方法难以全面捕捉故障特征。今天,我们将为大家介绍一项最新的研究成果——基于自适应多变量特征模式分解(AMFMD)和多注意力融合残差卷积神经网络(MAFResCNN)的多传感器故障诊断方法。这项技术不仅能够有效提取多传感器数据中的故障特征,还能在强噪声环境下实现高精度的故障识别。
问题的背景
机械设备的轴承、齿轮和转子等关键部件的运行状态直接影响设备的整体性能。然而,由于设备结构复杂、工作环境恶劣,这些部件常常会出现各种故障,导致直接或间接的经济损失。传统的故障诊断方法依赖于单传感器数据,容易忽略其他传感器的信息,导致诊断精度不足。此外,现有的深度学习模型在处理多传感器数据时,存在计算负担大、特征提取不充分等问题。
方法的概述
为了解决上述问题,研究团队提出了一种全新的多传感器故障诊断框架,结合了自适应多变量特征模式分解(AMFMD)和多注意力融合残差卷积神经网络(MAFResCNN)。
(一)自适应多变量特征模式分解(AMFMD)
(1)特征模式分解
特征模式分解 (FMD) 是一种非平稳信号分解方法,它由几个步骤组成(例如,自适应 FIR 滤波器组设计、滤波系数更新、故障期估计和模式选择)。FMD 通过初始化 FIR 滤波器组并更新滤波系数来同时提供不同的组件。
-
加载一维原始时间序列×,并预设 FMD 的参数,如所需的模式数 K、滤波器大小 L 和最大迭代数 I。
-
利用 M Hanning 窗口初始化 FIR 滤波器组,设置初始迭代 i = 1
-
利用公式:
获取 Decomposed Mode 分量,其中表示卷积运算符。
-
根据输入的一维时间序列×,分解后的模态分量
和估计的故障期
,则滤波器系数会更新,其中
是对应于自相关频谱的局部最大值的时间延迟
在第一个过零点之后。
-
断当前迭代次数是否达到所需的最大迭代次数 I。如果没有,请返回步骤 3 以继续迭代过程。否则,请转到步骤 6。
-
相关系数矩阵
跟M*M首先通过计算两个相邻模式分量之间的相关系数来获得。然后,选择具有最大相关系数的两个相邻模式分量。同时,根据预计故障周期
,估计所选模态分量的相关性峰度。最后,将具有较大相关性峰度 (CK) 的模态分量视为 FMD 的模态分量,并定义M=M-1;
-
判断当前模式数 M 是否达到所需的模式数 K。如果没有,请返回步骤 3。否则,终止分解过程并输出最终分解结果。
(2)多元特征模式分解
为了扩展原始 FMD 以处理多变量信号,通过将并行多通道数据分析集成到 FMD 中,提出了一种称为多变量特征模式分解 (MFMD) 的新方法,无需额外参数。换句话说,MFMD 本质上是 FMD 的补充,FMD 在多元信号处理中具有模式对齐特性,并且可以获得与多通道模式分量相关的有意义的关节特征信息。MFMD 的主要目标是直接在输入多变量信号的多维空间中自然地提取多通道模式分量。MFMD 的实现细节如下图1:
(3)MFMD 的自适应参数选择
与 FMD 类似,当 MFMD 用于处理多传感器数据时,其两个关键参数(即模式编号 K 和滤波器尺寸 L)也可以手动选择。换句话说,MFMD 没有配备参数自适应功能。针对这一问题,受粒子群优化(PSO)惯量权重的启发,提出了一种改进的非线性收敛因子鲸鱼优化算法(IWOA),用于自动确定MFMD的重要参数,可以有效平衡原始鲸鱼优化算法(WOA)的全局搜索和局部搜索能力。同时,提出了一种新的健康指数稀疏-复杂度积分测度 (SCIM) 作为 IWOA 的适应度函数,以辅助 MFMD 的参数优化过程。图 2 显示了使用 IWOA 对 MFMD 进行自适应参数选择的流程图。MFMD 的具体参数选择过程可以描述如下:
-
初始化 population 并预设 IWOA 的参数。具体而言,定义群体大小 N = 50,最大迭代次数 T = 30。考虑到需要人工选择 MFMD 的两个重要参数(即模式数 K 和滤波器尺寸 L)。向量
用于描述鲸鱼的位置,其中 K 表示 MFMD 的分解模态数,L 表示 MFMD 的滤波器大小。向量的上限和下限分别固定在 [6, 100] 和 [2, 10]。
-
估计鲸鱼的适应度值,确定鲸鱼当前的最佳位置。目前,许多机械健康监测指标被公布,如峰度 、循环峰度 、基尼指数 、平滑度指数 、谐波噪声比 (HNR) 和香农熵 等。尽管大多数稀疏度测量(例如峰度、循环峰度、基尼指数、平滑度指数和 HNR)可以有效地用于表征与轴承或齿轮故障相关的重复瞬变的脉冲性和稀疏性,以及机械振动的复杂性或不确定性信号经常被忽视,而香农熵提供了一种有效的方法来解决信号中包含的信息的复杂性或不确定性的定量问题。因此,在此步骤中,受循环峰度和 Shannon 熵的启发,提出了一种新的健康指标提名的稀疏-复杂性积分测度 (SCIM) 作为适应度值,以指导 MFMD 的参数优化过程,可以同时考虑机械振动信号稀疏性和复杂性的测量。对于一个周期为 T 的信号,SCIM 指数可以表示为:
SCIM 越大,得到的与机械故障相关的脉冲信息就越丰富,得到的信号的复杂程度就越低,MFMD 的信号分解性能就越好。换句话说,MFMD 的参数选择过程可以解释为搜索最大 SCIM 的优化问题。因此,IWOA 在 MFMD 的自适应参数选择中的适应度函数用 Eq 表示
同时,对于信号 3 (单脉冲),SCIM 的归一化振幅小于峰度和周期峰度,这意味着 SCIM 对单个异常脉冲的敏感性低于峰度和周期性峰度。对于信号 1(谐波信号),三个健康指标(即峰度、环峰度和 SCIM)的归一化振幅小于香农熵的振幅。换言之,3 项健康指标(峰度、环峰度和 SCIM)具有较好的抗谐波能力。因此,根据这种比较,我们可以得出结论,SCIM 综合了循环峰度和 Shannon 熵的特征评估能力,有利于故障相关特征的评估,能够同时测量来自稀疏性和复杂性的脉冲信息。
(4)仿真信号分析
为了进一步阐明所提出的 MFMD 方法的分解性能,根据以下方程 :
人工模拟多变量信号生成包含三个通道的模块,用于模拟方位本地故障下的多传感器数据 ,包括四个部分(即周期脉冲、随机脉冲、谐波干扰和噪声)图5显示了仿真的多变量信号及其相应的包络频谱。从包络频谱来看,有一个明显的谐波干扰相关耦合频率(即f2-f1,f3-f2,和f3-f1),但无法观测到方位故障频率。
AMFMD是对传统特征模式分解(FMD)的扩展,能够自动分解多传感器振动数据,生成多通道模式分量。与传统的FMD不同,AMFMD通过改进的鲸鱼优化算法(IWOA)自动选择关键参数,避免了人工参数设置的难题。此外,AMFMD具有模式对齐特性,能够从不同通道中提取出具有相似振荡模式的分量,从而更好地捕捉多传感器数据中的故障信息。
(二)多注意力融合残差卷积神经网络
MAFResCNN结合了残差网络(ResNet)和卷积神经网络(CNN)的优势,引入了压缩激励模块(SEM)和卷积块注意力模块(CBAM),能够同时捕捉全局和局部特征信息。通过这种多注意力机制,MAFResCNN能够增强有用的特征信息,抑制无用信息,从而在不显著增加计算负担的情况下,提升模型的故障识别能力。
(1)挤压激励模块
胡等提出的挤压激励模块(SEM)主要由挤压作组成和激励作
,它可以通过自动获取每个通道的重要性来加强每个通道之间的连接并提高网络模型的性能。图 9 显示了 SEM 的结构图。
(2)卷积块注意力模块
Woo et al. 提出的卷积块注意力模块 (CBAM) 是一种同时考虑空间和通道信息的轻量级注意力模块,可以增强特征图中有用的特征信息,抑制无用的特征信息,从而在实际应用中取得更好的结果。图 10 显示了 CBAM 的结构图。具体来说,CBAM 包括两个计算阶段(即通道注意力模块和空间注意力模块)。在第一阶段,首先将输入特征 F 输入通道注意力模块(见图 10 中的绿色块),以调整输入特征图并获得通道注意力矩阵与全球信息。然后,将其乘以原始特征图 F 以放大重要的通道信息。
(3)多注意力融合残差卷积神经网络
残差卷积神经网络(Residual convolutional neural network,ResCNN)是一类由卷积、池化和残差连接等组成的高级卷积神经网络,它可以通过使用带有身份映射的跳转连接来解决传统卷积神经网络中存在的梯度消失问题。即采用 ResCNN 自动学习特征信息,可以缓解传统 CNN 的过拟合问题,防止网络性能下降。然而,传统的 ResCNN 带有直接身份映射块,偶尔会导致梯度爆炸问题,甚至无法正常工作的网络训练。此外,具有直接身份映射块的传统 ResCNN 的学习性能不足以同步挖掘全局和局部特征信息。因此,针对这些问题,构建了具有两个注意力块(即 SEM 和 CBAM)的多注意力融合残差卷积神经网络 (MAFResCNN),以捕获更具鉴别性和更丰富的故障特征信息,并提升深度网络模型的故障特征学习性能。图 11 显示了 MAFResCNN 模型的架构。
(三)提出的故障诊断框架
为了获得更多的判别性特征信息,提高识别精度,本文提出了一种基于AMFMD和MAFResCNN的机械多传感器故障诊断新方法,该方法分为四个主要阶段(即振动数据采集、基于AMFMD的数据处理、基于MAFResCNN的模型训练和智能故障诊断)。 图 12 显示了所提出的故障诊断框架的整个流程图。我们方法的具体步骤可以概括如下:
-
振动数据收集。首先通过安装多个加速度计来收集机械多传感器振动数据,然后将收集到的振动数据随机分为训练样本和测试样本
-
基于 AMFMD 的数据处理。在此步骤中,首先利用 AMFMD 将所有样品数据分解为一组多通道模式分量,其中采用 IWOA 自动选择 MFMD 的关键参数(即模式数 K 和滤波器尺寸 L)。随后,直接采用上述已被证明有效的多通道综合指数 (MCI) 来指导包含最丰富故障信息的多通道模式组件的选择,可以节省加权平均信号重构带来的一定时间成本。最后,考虑到频率切片小波变换(FSWT)不仅具有优越的时频分析能力,而且与传统的时频工具(如STFT和WT)相比,更能适应非平稳振动信号。
-
为了在不增加样本数量的情况下实现多传感器信息融合,进一步计算所选多通道模式分量的 FSWT 并有机融合,生成包含多传感器重要特征的彩色多通道时频表示 (MTFR),既可以刻画故障相关信息,又可以进一步减轻后续网络训练的计算负担。为了便于对整个数据处理的深入理解,图 13 显示了获取融合 MTFR 的过程,可以理解为数据级融合的一种最简单的直接串联融合方式。
实验验证
本节采用来自实验室和工程的两个案例来验证所提方法在机械多传感器故障诊断中的有效性。此外,还启动了与现有流行方法的比较分析,以验证所提方法的优势。最后给出了一些讨论和前景。
实验设施和轴承数据描述:人工轴承故障实验是在东南大学 (SEU) 的机械故障模拟器上进行的,以收集轴承多传感器振动数据,以证明所提出的方法的可用性。图 14 显示了实验设施及其相应的结构示意图,主要由加载系统、轴承测试模块、驱动系统、电气控制系统和计算机监控系统 组成。实验采用放电技术,在测试轴承(即轴承 1)上分别植入 5 种故障状态(即外圈故障 (ORF)、内圈故障 (IRF)、球故障 (BF)、外-内圈复合故障 (OIRCF) 和外圈-球复合故障 (ORBCF))。
进一步说明所提方法中采用的 MAFResCNN 模型的有效性和必要性,以 −5 dB 的含噪轴承多传感器 IRF 信号为例,图 24(a) 和 (b) 分别显示了 AMFMD 获得的多通道模式分量及其相应的包络频谱。从图 24 中可以看出,轴承内圈故障频率在包络频谱中基本不可见,因此使用 MAFResCNN 进一步分析了 AMFMD 获得的多通道模式分量。
为了更好地可视化结果,引入了 t 分布随机邻域嵌入 (t-SNE) 技术进行特征可视化。具体来说,对于有和没有添加噪声的两种场景,利用 t-SNE 技术将三组样本数据(即原始输入数据、基于 AMFMD 的包络频谱数据和 MAFResCNN 全连接第 1 层的输出数据)分别从高维空间映射到二维空间。结果如图 25 所示。
从图 25 中可以看出,对于原始输入数据,轴承故障状态可以通过基于 AMFMD 的包络谱来识别,但基于 AMFMD 的包络谱提取的特征的区分度不如 MAFResCNN 学习的特征那么明显。更重要的是,当原始输入数据被强噪声破坏时,很难通过基于 AMFMD 的包络频谱来识别轴承故障类型。然而,与基于 AMFMD 的包络频谱相比,即使在强噪声环境中,通过观察 MAFResCNN 学习的特征来识别方位故障模式也可以更加清晰。换句话说,在基于 AMFMD 的数据处理之后,使用 MAFResCNN 进行智能故障识别仍然是必要和有益的。
总结与思考
尽管该方法在多传感器故障诊断中取得了显著成果,但仍有一些问题值得进一步研究。例如,如何进一步优化多传感器信息融合策略,如何在无监督或半监督学习框架下实现故障诊断,以及如何提高算法的计算效率等。未来,研究团队计划在这些方向上进行深入探索,以进一步提升故障诊断的智能化水平。这项研究提出了一种基于AMFMD和MAFResCNN的多传感器故障诊断方法,能够有效提取多传感器数据中的故障特征,并在强噪声环境下实现高精度的故障识别。实验结果表明,该方法在轴承和风力涡轮机的故障诊断中表现出色,识别准确率显著优于现有的多种故障诊断方法。未来,该方法有望在工业设备的智能运维中发挥重要作用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。