农业强国是社会主义现代化强国的根基,推进农业现代化是实现高质量发展的必然要求。农业数字化转型需要积极稳妥推进数字农业建设,因地制宜谋划特色农业数字化发展。北京浪潮云计算有限公司聚焦县域经济发展领域,依托云网边端协同、云数智融合、建管运一体化的全栈服务能力,创新打造海若大模型、产业云服务平台等核心产品,通过搭建具有当地特色的农业产业云服务平台,释放农业“数据要素”叠加倍增效应,推动农业数字化转型,推动实现农业高质量发展。
图1 智慧农业产业链应用场景
一是制定统一标准,推动数据融合共享。从农业新模式、新要素、新产品三大方向出发,遵循数据驱动的“数采-数算-数用”的建设思路,浪潮云构建了集“云、网、边、端、数、系统、应用”于一体的农业产业大数据平台。平台整合农业领域生产、加工、营销、物流、人才、技术、资金等数据,形成数据采集、治理、共享、交换、流通、交易六大领域标准体系,促进农业一二三产业融合发展。
二是依托人工智能提高数据分析效率。浪潮云推出专用于农业领域的智能化服务产品-海若农业大模型,通过先进的数据分析和机器学习技术,对农业数据进行深度挖掘和智能分析,提供智农专家智能体、政策领航智能体以及市场360智能体等服务,实现对农业产业链全流程的智能化升级。以近海渔业应用场景为例,海若农业大模型通过实时数据收集和智能分析,对虾夷扇贝、海螺、海参等海产品提供环境监测、养殖优化、产品追溯和市场分析等服务,有利于提升养殖效率、合理指导市场销售策略、保障食品安全,同时辅助相关政策制定与风险管理,实现海洋养殖业可持续发展。
图2 海若农业大模型
三是建立完善安全治理机制,保障数据安全。浪潮云探索打造农业可信数据空间平台,通过构建利用管控、多源异构资源可信调度执行管理、可信节点与组网、语义互操作模型、可信组件管理、可信运行环境管理、可信应用管理等核心模块,形成农业数据全生命周期管理能力,解决农业数据要素提供方、使用方、服务方、监管方等主体在数据流通利用过程中的安全与信任问题。
四是丰富数据赋能应用场景,提升数据价值。在农业产业链供应链协同方面,浪潮云农业产业云服务平台加速农业领域数据汇聚,提供农产品数字化管理、产销对接、市场行业监测、品牌运营等服务,实现农业全流程数字化能力升级。在数字农业领域,基于农业语料知识和国产化算力构建浪潮云海若农业大模型,覆盖农业生产、农业管理、农业政策、农业市场分析等多方面,帮助农业从业者和决策者提高农业生产效率、优化农业资源配置。在农业数据资源入表与交易领域,浪潮云农业数据空间支撑推动涉农企业所属数据资源入表,通过开展数据质量评价、数据资产评估等工作,有效提高企业信用评级、拓宽融资渠道、增强融资能力。
图3 全生命周期质量安全服务体系
五是推出差异化服务,打造可持续运营模式。浪潮云搭建农业产业云服务平台,引导当地农业产业链上下游企业入驻。平台以数据流引领产业链中的物资流、人才流、技术流、资金流汇聚,通过聚合产业链资源,助力企业降低采购成本,提高议价能力,推动农产品物资的集采集销,释放数据要素叠加倍增效应。以渔业产业服务云平台为例,为大连市长海县渔业生产、加工、营销全流程提供数字化服务,覆盖海产品5000余万斤,产业规模超20亿元。
图4 长海县渔业产业大脑
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。