沃的顶会
小样本学习与贝叶斯方法的结合近年来成为人工智能领域的热点研究方向,其核心在于通过贝叶斯框架处理数据稀缺问题中的不确定性,从而提升模型的泛化能力。
例如,蒙特利尔大学Mila研究所提出的基于贝叶斯元学习的小样本关系抽取方法,利用全局关系图和随机梯度Langevin动力学优化原型向量的后验分布,显著提升了小样本任务中的性能。
此外,兰州理工大学的研究团队开发了基于大边界贝叶斯原型学习的小样本图像分类方法,通过引入变分推理和大边界分类思想,有效解决了原型偏差问题,提升了分类精度。
文章解析
该论文提出了一种基于镜像下降(Mirror Descent)的变分推断方法,将其无缝集成到基于高斯过程(Gaussian Process, GP)的小样本分类中,解决了非共轭推理的挑战。
通过利用非欧几里得几何,镜像下降能够提供沿相应流形的最陡下降方向,从而加速收敛,并且对变分分布的参数化具有不变性。
创新点
镜像下降与变分推断的结合:将镜像下降引入GP的小样本分类中,将非共轭推理转化为具有共轭计算的优化问题。
加速收敛:镜像下降通过提供最陡下降方向,显著提高了内循环和外循环的收敛速度。
参数化不变性:镜像下降对变分分布的参数化具有不变性,这意味着其收敛速度不依赖于参数化的选择。
研究方法
双层优化框架:采用双层优化框架,内循环通过变分推断估计每个任务的潜在函数后验分布,外循环则更新高斯过程核的超参数。
镜像下降的应用:在内循环中使用镜像下降进行优化,而不是传统的梯度下降,从而加速收敛。
实验验证:通过实验验证了所提方法在标准小样本分类基准上的性能,包括1-shot和5-shot场景。
研究结论
性能提升:实验结果表明,所提方法在分类准确性和不确定性量化方面具有竞争力,并且比基线模型更快地收敛。
超参数影响:研究了不同超参数设置下的鲁棒性,包括内循环步长、不同核函数和内循环步数。
文章解析
该论文提出了一种基于贝叶斯方法的预训练模型集成框架,用于低样本图像分类任务。
论文的核心在于如何有效地整合不同的预训练模型(如CLIP)以及其他预训练模型的知识,以提升小样本分类的性能。
创新点
贝叶斯模型集成框架:提出了一种基于高斯过程的贝叶斯模型集成框架,通过指定均值函数和核函数,将CLIP和其他预训练模型的知识进行整合。
直接回归分类标签:通过直接回归分类标签,该框架能够进行解析推断、直接量化不确定性,并进行有原则的超参数调整。
灵活整合预训练模型:该方法不仅能够利用CLIP,还可以灵活整合其他预训练模型,弥补了现有CLIP基础方法的不足。
研究方法
高斯过程回归:利用高斯过程回归直接对分类标签进行建模,通过贝叶斯推断来量化不确定性。
预训练模型集成:通过组合不同的预训练模型,构建了一个强大的核函数,用于捕捉图像特征。
实验验证:在标准基准数据集上进行了广泛的实验,验证了该方法在预测性能上的优势。
研究结论
性能提升:该方法在低样本图像分类任务上表现优异,与现有的竞争性集成基线相比,预测性能有显著提升。
不确定性量化:该框架能够提供高质量的不确定性估计,有助于在分布外数据集上评估模型的鲁棒性。
模型校准:尽管依赖于标签回归,但该方法在模型校准方面优于大多数确定性基线。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。