一、数据治理工作内容
华为数据治理解决方案在工作内容上主要围绕以下几个方面展开,旨在构建一整套从制度建设到数据应用,再到工具支撑的管理体系:
- 制度和规范建设
建立健全的数据治理体系,明确企业内部数据管理的整体目标、职责分工和操作标准。包括制定管理办法、全生命周期管理策略以及数据治理考核评价体系,为数据采集、处理、存储和应用提供政策指导和行为准则。 - 数据标准与采集管理
建立统一的数据标准体系,包括业务术语、数据字典、命名规则和编码方式,确保企业各部门对数据含义和格式达成一致。同时,针对不同数据来源(如业务系统、外部接口和人工录入)制定科学的采集规则,保证数据在录入阶段即具备较高的准确性和完整性。 - 数据清洗与转换、质量监控
对采集来的原始数据开展清洗和格式转换工作,通过自动化或半自动化的处理方式实现数据去重、空值填补、格式校正和统一编码。建立数据质量监控机制,对数据的准确性、完整性、一致性和时效性进行实时检测,确保后续业务分析使用的数据始终处于良好状态。 - 数据整合与应用开发
将经过清洗转换的各来源数据整合为统一的数据资产,通过数据仓库、数据集市或数据湖实现数据共享和跨系统互联。同时,对历史数据进行归档、脱敏或清理处理,以满足安全合规要求。基于高质量的数据,构建支持BI报表、数据可视化、人工智能模型和数据挖掘的开发平台,助力企业实现数据驱动的业务创新。 - 技术工具与平台支撑
全过程依托专业的数据治理工具进行管理和支持。包括数据标准库、元数据管理系统、ETL/ELT工具、数据质量监控系统以及安全与权限管理系统等,确保各环节自动化高效运行,从而为整体数据治理体系提供有力的技术保障。
二、数据治理工作流程
华为数据治理解决方案在流程设计上实现了从规划、实施到反馈优化的全流程管理,通过系统化的步骤确保数据在全生命周期内得到有效治理和价值释放:
- 组织规划与制度制定
以企业战略和业务需求为基础,首先组建数据治理团队,明确数据治理负责人的职责以及相关职能部门的分工。通过深入调研,制定符合实际需求的治理目标和关键绩效指标,并制定相应的管理办法和操作规范,为后续各项工作的开展奠定制度基础。 - 数据标准与元数据管理构建
建立统一的数据标准和数据字典,明确业务术语、字段类型、格式规则和编码方式。同时,利用元数据管理平台记录各数据源的信息、字段含义及其关系,确保数据在不同系统间能够实现一致性和可追溯性。 - 数据采集与导入
梳理企业内外所有数据来源,制定科学的采集策略和接口规则,确保数据在进入系统前经过初步格式校验和完整性检查。通过规范的数据采集流程,保障数据质量的基础工作稳固开展。 - 数据质量管理与清洗转换
在数据采集后开展严格的数据质量检测,根据预设规则对数据进行去重、格式转换、空值处理和标准化操作。利用自动化工具记录处理过程和质量指标,并通过质量监控系统对异常数据及时发出预警,必要时启动自动修正或人工干预流程。 - 数据整合与存储管理
将处理后的数据集中整合,构建统一的数据仓库或数据集市,并对历史数据进行合理处理(如归档、脱敏或清理)。制定分层存储策略,实现对冷热数据、敏感数据的分级管理,既保证数据利用效率,又确保安全合规。 - 数据应用与反馈机制
通过API、BI平台或数据可视化工具,将高质量数据服务化,供各业务部门进行分析和决策支持。应用过程中的业务反馈会作为数据治理闭环的一部分,持续推动数据标准、采集规则和质量管理流程的优化升级。 - 数据安全与合规管理
全流程中贯穿严格的数据安全策略,采取数据加密、脱敏、权限控制和访问审计等措施,确保数据在采集、处理、存储和应用各阶段均满足安全和法规要求,防止数据泄露和越权访问。
三、46页PPTX华为官宣数据治理解决方案主打胶片
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。