一、数智化转型的战略支点
(1)破局生存的必然选择
全球产业链重构催生制造业价值体系变革,消费端C2M定制化需求呈指数级增长。某家电龙头企业依托用户大数据平台,实现订单响应速度提升58%,库存周转周期缩短至7天,印证了柔性智造对市场变化的敏捷响应能力。
(2)技术集群的融合突破
5G+工业视觉系统在精密部件质检中实现0.02毫米级缺陷识别,数字孪生工厂将新品研发周期压缩40%。某航天装备企业通过虚实映射技术,在虚拟空间完成火箭发动机2000余次工况模拟,大幅降低试错成本。
(3)政策生态的协同共振
工信部"灯塔工厂"培育计划与23省智能制造专项基金形成政策组合拳。长三角某新能源基地获政府-银行-企业三方共建的智能改造基金支持,设备联网率达97%,万元产值能耗下降34%。
二、智能制造的实现路径
(1)认知革命的顶层设计
某船舶重工集团构建"三横四纵"转型架构:横向贯通研发-制造-服务链条,纵向打造数据中台-物联平台-AI平台技术底座,形成全要素数字化改造方案。
(2)基建设施的立体升级
工业PON网络在离散制造车间实现98%设备毫秒级响应,边缘计算节点使关键工序数据处理时延降至5ms以内。某精密仪器企业构建的混合云架构,实现设计图纸跨洲际协同修改的实时同步。
(3)流程再造的价值重构
基于区块链的供应链金融平台使中小供应商融资周期从45天缩短至72小时。某快消品企业通过智能排产系统,将产线换型时间从120分钟优化至18分钟,OEE设备综合效率提升26个百分点。
三、未来工厂的构建范式
(1)神经末梢感知体系
分布式光纤传感技术在千平米厂房布设温度监测点超2000个,声纹识别系统对36类设备异常声响实现95%准确率预警。某半导体企业通过振动频谱分析,将真空泵故障预判提前至72小时。
(2)数字中枢决策系统
工艺知识图谱沉淀专家经验数据12万条,动态排程算法使多品类混流生产效率提升33%。某工程机械企业构建的智能决策中枢,实现从市场预测到物料采购的72小时闭环响应。
(3)虚实互动的运维革命
AR远程指导系统使设备维护效率提升4倍,数字镜像系统对2000个质量参数进行实时映射。某飞机制造商通过三维点云比对技术,将复材部件装配精度控制在0.1毫米级。
四、工业物联的生态进化
(1)边缘智能的分布式架构
TSN时间敏感网络在汽车焊装线实现0.5微秒级同步精度,AI推理芯片使视觉检测帧率提升至120fps。某液晶面板企业的分布式质检系统,实现每8秒完成55项光学参数检测。
(2)平台经济的价值裂变
工业APP商店汇聚3800个解决方案,某装备制造商通过平台获取智能诊断算法,使运维成本下降42%。产业大脑连接上下游287家企业,形成备件共享的云仓体系。
(3)生态协同的创新范式
基于数字孪生的跨界研发平台,使某医疗器械企业与材料科学家联合开发出抗菌率99.9%的新型导管。工业元宇宙空间实现全球6国工程师的虚拟协同装配验证。
五、管理系统的智能跃迁
(1)MES的进阶应用
实时能效监控模块使某化工厂蒸汽单耗降低18%,自适应调度系统应对30%急单冲击仍保证交期。设备健康度预测将非计划停机减少63%,形成预防性维护新范式。
(2)ERP的生态整合
智能合约系统自动触发380类采购流程,需求感知算法使预测准确率提升至89%。某跨国集团通过多币种资金池管理,节省汇兑成本超2000万元/年。
(3)PLM的全链穿透
参数化设计平台沉淀20万组仿真数据,变更影响分析系统将工程变更处理周期压缩65%。某新能源汽车企业通过BOM智能校验,避免2000万元级物料错配风险。
本方案构建了"技术穿透-场景重构-生态共赢"的转型方法论,为企业提供从战略规划到落地实施的完整解决方案。在工业4.0深水区,数智化能力正成为制造企业的新型核心竞争力,需要构建持续进化的数字韧性体系。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。