在医疗领域,人工智能正以颠覆性力量重构传统医疗模式。从影像诊断到手术机器人,从远程监护到病历管理,AI技术正在穿透医疗全链条,推动医疗服务向更精准、更高效、更普惠的方向演进,为下一代医疗保健解决方案提供动力。
1.影像革命:AI成为医生的"第二双眼"
在医学影像领域,AI展现出超越人类的模式识别能力。基于深度学习的算法可快速捕捉CT、乳腺钼靶等影像中的细微异常,辅助放射科医生提升诊断效率。以医疗科技公司Merative的AI工具为例,其通过实时分析影像数据,不仅将病灶识别准确率大大提升,还能预测疾病进展风险,为临床早期决策提供支持。
这种"人机协同"模式正在改变诊断流程:当患者还在候诊区时,AI已完成对数百张影像的预分析,为医生提供初步诊断建议。
2.手术进化:机器人操作突破人类极限
达芬奇手术系统开创了外科机器人时代,而AI的加入正在赋予手术机器人更强大的决策能力。通过机器学习算法,机器人能实时分析患者解剖结构,精准定位手术关键点。
这种"智能手术台"不仅提升操作精度,更能通过术中数据分析预测并发症风险。未来,随着5G与边缘计算的融合,远程机器人手术将成为可能,让优质医疗资源突破地理限制。
3.服务重构:从**“治病"到"治未病”**的范式转移
AI正在重塑医疗服务的时空边界。基于可穿戴设备的远程监护系统,可实时追踪慢性病患者的心率、血糖等生理指标,一旦发现异常立即预警。
在诊疗前端,自然语言处理技术催生的医疗聊天机器人,正在成为患者的"智能导诊员"。这些系统不仅能理解复杂病症描述,还能根据电子健康档案提供个性化建议。Twill 提供一种名为Taylor 的聊天机器人。可以学习、解释和理解每个客户的需求。自动化AI 系统还可以自动检测和纠正患者记录中的错误。
4.效率革命:数据智能释放医疗生产力
医疗数据的"数字沼泽"正在被AI转化为决策金矿。通过自然语言处理(NLP)技术,电子病历的非结构化数据被快速结构化,使医生检索病历的时间从平均15分钟压缩至3分钟。
Enlitic Curie™提供的预测分析功能可以根据每位患者的独特医疗需求定制治疗计划,从而改善护理结果。Merative 则采用实时循证洞察来协助医生完成疾病早期的检测和诊断。
在医疗质控领域,AI同样展现出独特的纠错能力。通过构建知识图谱,系统能自动检测处方冲突、识别检查重复项。
5.普惠医疗:技术民主化破解资源困局
AI正在重塑医疗经济学的底层逻辑。通过预测模型分析,医疗机构能精准识别高危人群,将有限资源投入最需要的环节。
在药物研发领域,AI正在加速"从实验室到病床"的转化进程。高盛测算,AI技术可使药物研发效率提升10倍,全球AI制药市场规模预计从2023年的12.93亿美元飙升至2031年的85亿美元,年复合增长率达27.2%。这意味着更多创新疗法能以可负担的价格惠及患者。
AI通过识别哪些患者可能对特定干预措施反应良好,帮助医疗保健提供者节省治疗和药物费用。此外,AI 驱动的健康记录(如Viz.AI 提供的健康记录)使患者能够快速访问他们的健康信息,让他们能够跟踪自己的健康状况进展并与医疗保健提供者进行有效沟通。
结语:医疗AI的进化图谱与伦理边界
随着生成式AI、多模态大模型等技术的突破,医疗AI正从辅助工具向"决策伙伴"进化。但技术狂欢之下,数据隐私、算法可解释性等伦理挑战仍需直面。未来,如何在提升效率与保障权益间找到平衡,将是医疗AI发展的关键命题。可以确定的是,这场由代码与算法驱动的医学革命,正在为人类健康书写新的可能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。