Qwen3本地化部署,准备工作:SGLang


官网:https://github.com/sgl-project/sglang

在这里插入图片描述

SGLang

SGLang 是一个面向大语言模型和视觉语言模型的高效服务框架。它通过协同设计后端运行时和前端编程语言,使模型交互更快速且具备更高可控性。核心特性包括:

1. 快速后端运行时

  • 高效服务能力:通过基数注意力(RadixAttention)实现前缀缓存、零开销CPU调度器、连续批处理、分页注意力(Token Attention)、推测式解码、张量并行、分块预填充、结构化输出、量化支持(FP8/INT4/AWQ/GPTQ)以及多LoRA批处理。
  • 性能优化:支持分布式推理加速和动态内存管理,显著降低延迟。

2. 灵活的前端编程语言

  • 直观开发接口:支持链式生成调用、高级提示工程、控制
### 如何在本地环境中部署 DeepSeek 并连接网络 #### 配置环境与安装依赖 为了成功部署 DeepSeek,在本地计算机上需先设置适当的工作环境。这通常涉及创建虚拟环境以及安装必要的 Python 包和其他工具。 对于特定版本的 DeepSeek,如 `Deepseek R1`,可以通过指定端点来解决可能遇到的下载问题[^3]: ```bash HF_ENDPOINT="https://hf-mirror.com" python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --trust-remote-code --tp 1 ``` 此命令通过设定镜像站点作为 Hugging Face 的替代源,从而绕过潜在的下载障碍。 #### 启动 DeepSeek 服务 一旦完成了初步配置,则可以根据官方指南中的描述启动 DeepSeek 项目的服务部分[^1]。虽然具体细节取决于所使用的 DeepSeek 版本及其组件构成,但大多数情况下会涉及到执行某些脚本来初始化服务器进程。 #### 设置网络访问权限 为了让外部设备或互联网上的其他机器能够访问已部署的 DeepSeek 实例,必须调整主机的操作系统防火墙规则和服务定义文件(例如 `/etc/systemd/system/ollama.service`),以便允许来自外界的数据请求到达目标应用程序监听的端口[^2]。 编辑服务单元文件时,应确保包含了正确的 ExecStart 参数指向实际可执行程序的位置,并设置了合适的 User 和 Group 权限以保障安全性。完成修改之后记得重启 Systemd 或者重新加载其配置使更改生效。 #### 测试联机功能 最后一步是对新建立起来的在线接口进行全面测试,验证是否可以从远程位置正常调用 API 接口获取预期响应。这一过程往往包括发送 HTTP 请求给公开地址下的各个路由路径,并检查返回的结果是否符合设计文档里的说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几道之旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值