AI Agent与RPA的最新应用案例及企业如何提高运营效率

2024年,AI Agent与RPA在金融行业的应用案例展现了它们如何通过自动化和智能化手段,帮助企业优化业务流程,提高工作效率,降低成本。以下是一些最新的应用案例:

AI Agent与RPA在金融行业的最新应用案例

天弘基金:天弘基金利用AI Agent开发了“智汇”产品,帮助研究员快速浏览和筛选市场研报,以及“智读”产品,专门针对特定研报进行解读和提问。此外,还有“弘小助”板块,提供行业研究、市场分析和金融知识问答等服务。

度小满轩辕大模型:度小满研发的“轩辕”大模型成功入选“中国AI大模型先进应用案例”,该模型用实际业务场景积累的海量金融数据训练而来,通过独创的hybrid-tuning创新训练方式,实现在增强金融能力的同时,不损失通用能力。大模型技术已经应用在度小满各个业务场景,从营销、客服、风控、办公再到研发,已经初见成效。

应用案例带来的效益

生成式AI的潜在商业价值:生成式AI有望给金融业带来3万亿规模的增量商业价值。预计1-2年内,首批大模型增强的金融机构会进入成熟应用期,3年后带动金融业生成式AI的规模化应用。

AI Agent与RPA结合使用的优势:通过技术创新,天弘基金实现了以较小成本开发出效果显著的AI模型,打破了对大规模算力的依赖。这些应用不仅提升了信息处理的实时性和准确性,还提高了投资决策的科学性和效率。

未来发展趋势

  • 生成式AI在金融行业的应用前景:生成式AI在金融行业的落地需要遵循特定的原则,确保合规性。未来几年内,生成式AI将会如何改变金融服务的传统形态和格局,为金融机构提供转型升级的机会。

  • AI Agent与RPA结合使用的潜力:AI Agent与RPA的结合使用在提升企业运营效率方面具有巨大潜力。随着技术的不断进步,预计这种结合将在金融行业中得到更广泛的应用,进一步推动行业的数字化转型。

通过上述分析,我们可以看到AI Agent和RPA的结合使用在提升企业运营效率方面具有巨大潜力,但同时也面临着一系列挑战。企业需要综合考虑这些因素,制定合适的策略,以实现自动化和智能化的目标。

如何利用AI Agent和RPA技术提升中小企业的运营效率

AI Agent和RPA技术是提升中小企业运营效率的有力工具。通过自动化和智能化手段,它们可以帮助企业优化业务流程,提高工作效率,降低成本。以下是一些具体的实施策略和案例:

实施策略

技术整合:建立一个统一的架构,使RPA的流程自动化与AI的数据分析和决策能力无缝对接。使用APIs和中间件实现实时数据交换和通信,简化集成过程。

持续优化:建立机制持续监控和优化自动化系统的性能。定期审查流程效率,分析系统日志,收集用户反馈,并根据反馈调整和改进自动化流程。

应用案例

数字干警小助手:某市公安局与实在智能合作开发的Agent数字干警小助手,通过模拟人类操作,实现业务流程的自动化处理,显著提高了工作效率。

手机Agent应用:春节开工期间,用户可以通过手机智能体自动完成重复性工作,如向客户发送开工问候,成为用户的手机办公助理。

飞书智能伙伴:飞书智能伙伴能够迅速获取信息并生成相关内容,帮助用户提炼会议要点、总结未读消息等,显著提升工作效率。

面临的挑战及解决方案

  • 技术集成:解决技术兼容性和数据一致性问题,使用iPaaS(集成平台即服务)来简化集成过程。

  • 复杂决策:AI Agent在处理复杂任务时,其决策能力仍有待提高,需要持续优化AI模型和算法。

  • 安全性和隐私:确保数据安全和用户隐私,通过过滤企业内部的隐私数据,确保流程自动化执行时不会泄露企业敏感信息。

通过上述策略和案例,中小企业可以有效地利用AI Agent和RPA技术提升运营效率。同时,面对挑战时,通过技术整合、持续优化和确保安全性,企业可以克服这些障碍,实现更深层次的自动化和智能化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值