从openAI最新模型GPT-o1再谈思维链(Cot)技术,大模型该怎么提升其逻辑推理能力?

推理能力是大模型迈向AGI的必经之路

最近openAI发布了号称史上最强模型——o1,其具有强大的逻辑推理能力,号称能达到人类的博士生水平。

而从o1模型的评测来看,o1模型在数学竞赛,编码,科学问答等方面表现良好,甚至高出了GPT4o一大截。

而且,o1在物理,化学,生物,逻辑学等其它领域,相比GPT4o都得到了巨大的提升。

而据介绍o1模型之所以具有如此强大的逻辑推理能力,就是因为使用了思维链技术;当然,目前官方并没有公布o1的核心技术理论,因此也不排除o1模型使用了其它更加强大的逻辑推理技术。

大模型之思维链技术

简单来说,思维链技术就是模拟人类的思维方式,在面对复杂问题时,让大模型像人类一样思考,把复杂问题拆分成简单的步骤,然后通过调用工具一步一步地去完成。

而大模型还有哪些能够提升其逻辑推理能力的技术或方法?今天就来盘点一下提升大模型逻辑推理的黑科技。

初级推理技术

大模型初级推理技术的核心是,把大型复杂的任务,分解成一个一个的简单的小任务。

主要包括,思维链(CoT),自洽性思维链(CoT-SC),思维树(TOT-tree of thought)等技术。

思维链

思维链全称Chain of Thought,就是把任务进行拆解,适用于各种推理任务,比如数学,逻辑判断等,思维链的优点就是不用对模型进行训练和微调。

在思维链技术中,可能还会使用到零样本(zero-shot prompt)提示和少样本提示(few-shot prompt)等技术。

自洽性思维链

所谓的自洽性思维链,是指对同一个问题,生成多个不同的思维链技术,并让模型从中挑出最合适的方案。

思维链技术并不稳定,其效果取决于大模型的能力,而如果让大模型进行发散性思维,通过多种不同的方式解决问题,然后从中找到最优解,这就是自洽性思维链。

思维树

思维树(TOT)是对思维链(CoT)的进一步扩展,在思维链的每一步,推理出多个分支,拓扑展开成一棵思维树。使用启发式的方法评估每个推理分支对问题解决的贡献。

使用搜索算法,如广度搜索或深度搜索算法等来探索思维树,并进行前瞻和回溯。

中级推理技术

初级推理技术的优点是简单,缺点是结果不可控,推理过程与结果完全由大模型本身自由发挥,即使出错也没有纠错机制。

因此,以ReAct,Plan & Execute和Self Discover为代表的中级推理技术就出现了。

其会约束大模型的推理方向,并根据环境反馈进行纠错。

ReAct

ReAct全称Reasoning and Acting,意思就是推理与行动,来解决多样化的语言推理与决策任务。

其典型的流程是Thought-思考——Action-行动和Observation-观察;思考与行动都比较容易理解,观察其实就是一个反馈的过程,把任务执行的步骤记录下来进行观察,根据观察结果进行调整。

这样经过思考——行动——观察——再思考——再行动——再观察的过程,经过多次循环,最终达到目的。

Plan & Execute

Plan & Execute 方法的本质是先计划再执行,从名称就可以看出,计划 & 执行,通过把问题拆分成一个一个的子任务,根据情况调整执行计划。

Self-Discover

Self-Discover主要包含两个阶段:

阶段一:自发现特定任务的推理结构

阶段二:应用推理结构

高级推理技术——Reflexion 和 LATS

初级推理和高级推理虽然能解决一些简单的任务,但对一些更复杂,思维链路更长的任务就束手无策了。

因此,高级推理技术就出现了,Reflexion和LATS的核心思想就是通过强化学习的方式来解决更复杂的任务场景。

Reflexion

Reflexion 的本质是强化学习,它主要由三部分组成,参与者——Actor,评估者——Evaluator和自我反思——Self-Reflection。

Reflexion 旨在通过反思过去的错误,并把这些知识纳入未来的决策,用以帮助Agent提升表现能力。因此,Reflexion非常适合那种通过反复实验得到结果的任务,比如决策,推理,编程等。

LATS——Language Agent Tree Search

LATS技术全称是——Language Agent Tree Search,简单来说就是Tree search + ReAct + Plan&Execute+ Reflexion,因此可以说LATS技术是目前最强的推理技术,集百家之长。

这里的ReAct,Plan & Execute 和Reflexion在前面的内容中都简单介绍过,这里要再介绍一下Tree Search。

Tree Search是一种树搜索算法,LATS使用蒙特卡罗算法(MCTS),通过平衡搜索找到最优决策路径。

大模型推理能力黑科技

https://www.msn.cn/zh-cn/news/other/openai%E6%9C%80%E5%BC%BA%E6%8E%A8%E7%90%86%E6%A8%A1%E5%9E%8Bo1%E6%AD%A3%E5%BC%8F%E5%8F%91%E5%B8%83-%E4%B8%80%E8%B5%B7%E5%9B%9E%E9%A1%BE%E9%82%A3%E4%BA%9B%E6%8F%90%E5%8D%87%E5%A4%A7%E6%A8%A1%E5%9E%8B%E6%8E%A8%E7%90%86%E8%83%BD%E5%8A%9B%E7%9A%84%E9%BB%91%E7%A7%91%E6%8A%80/ar-AA1qAU2j?ocid=BingNewsSerp

总之,大模型的推理能力是迈向AGI的基础,也是Agent未来应用的基石。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### DeepSeek-R1 模型各版本的区别对比 #### 版本概述 DeepSeek-R1 是一系列基于蒸馏技术和推理优化的大规模语言模型,旨在通过不同的参数量和技术手段满足多样化的应用场景。以下是各个版本的主要特点及其区别: #### 1. **DeepSeek-R1-7B** 该版本是一个较小的模型,具有约 70 亿个参数。它通过蒸馏技术从更大的 DeepSeek-R1 模型中提取知识[^1]。尽管体积更小,但在多个基准测试中表现出色,甚至超越了一些非推理模型(如 GPT-4o-0513)。这种高效的表现使其成为资源受限环境下的理想选择。 #### 2. **DeepSeek-R1-14B** 此版本拥有大约 140 亿个参数,相较于 7B 版本有更高的复杂度和更强的能力。在所有评估指标上,DeepSeek-R1-14B 显著超过 QwQ-32B-Preview,展现出卓越的推理能力和广泛的适用性。这一版本适合需要更高精度的任务场景。 #### 3. **DeepSeek-R1-32B 和 DeepSeek-R1-70B** 这两款模型分别具备 320 亿和 700 亿个参数,代表了 DeepSeek-R1 系列中的高端产品线。它们不仅在多数基准测试中大幅领先 OpenAI 的 o1-mini,还体现了蒸馏技术的巨大潜力。这些大规模模型适用于复杂的多模态任务或高度专业化的需求。 #### 4. **DeepSeek-V3** 不同于上述专注于大小与性能平衡的设计理念,DeepSeek-V3 更侧重于将长思维 (Chain of Thought, CoT) 技术引入到标准 LLM 中[^2]。通过融合来自其他 R1 系列成员(例如 R1-14B 或更大版本)的验证和反思机制,V3 实现了显著增强的逻辑推导能力。此外,针对输出样式及篇幅也做了精细调整,从而更好地服务于特定类型的用户群体。 --- ### 总结比较表 | 参数/特性 | DeepSeek-R1-7B | DeepSeek-R1-14B | DeepSeek-R1-32B & 70B | DeepSeek-V3 | |------------------|-------------------------|--------------------------|----------------------------|---------------------------| | 参数数量 | ~7B | ~14B | ~32B / ~70B | N/A | | 主要优势 | 高效、轻量化 | 平衡性能与尺寸 | 极致性能 | 增强推理能力 | | 应用场景 | 资源有限设备 | 多数通用任务 | 高端科研项目 | 推理密集型工作流 | 以上内容综合反映了不同版本间的核心差异,并突出了各自的应用方向和发展趋势[^3]。 ```python # 示例代码:假设我们有一个函数用于加载指定版本的模型并返回其基本信息 def load_model(version): versions = { 'R1-7B': {'params': 7e9, 'description': 'Efficient and lightweight'}, 'R1-14B': {'params': 14e9, 'description': 'Balanced performance'}, 'R1-32B': {'params': 32e9, 'description': 'High-end research'}, 'R1-70B': {'params': 70e9, 'description': 'Extreme capabilities'} } model_info = versions.get(version) if not model_info: raise ValueError(f"Unsupported version {version}") return f"{version} has {model_info['params']} parameters ({model_info['description']})." print(load_model('R1-7B')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值