深入理解并正确选择 Embedding 相关的模型参数量、最大Token数量(max tokens)、维度大小(dimension size)、张量大小(tensor size)以及批次大小(batch size),对于构建高效且性能良好的自然语言处理(NLP)系统至关重要。
一、基础概念
1. 模型参数量
定义:模型参数量指的是模型中所有可学习参数的总数,包括权重和偏置等。对于嵌入层来说,参数量主要由词汇表大小(Vocabulary Size, V)和嵌入维度(Embedding Dimension, D)决定,计算公式为V * D
。
选型建议:
-
平衡精度与效率:更大的参数量通常意味着更高的表达能力和更好的性能,但也伴随着更长的训练时间和更多的内存消耗。因此,需要根据具体应用场景在精度和效率之间找到平衡。
-
预训练模型:如果使用预训练模型,可以考虑其默认参数量;如果是自定义模型,则需基于实验结果进行调整。
2. 最大Token数量 (Max Tokens)
定义:指模型能够处理的最大输入序列长度(Sequence Length)。例如,BERT-base支持的最大序列长度为512个tokens。
选型建议:
-
任务需求:根据具体的NLP任务来确定。比如,文本分类可能不需要特别长的上下文,而问答系统则可能受益于较长的上下文。
-
数据特性:分析目标数据集中文本长度的分布情况,确保选定的最大Token数量能够覆盖大部分样本。
-
资源限制:考虑到硬件资源的限制,过长的序列会增加内存占用和推理时间。
3. 维度大小 (Dimension Size)
定义:每个token被映射到的向量空间的维度数。例如,BERT-base使用768维的嵌入。
选型建议:
-
任务复杂度:复杂的任务可能需要更高维度的嵌入以捕捉更多语义信息;简单任务则可以使用较低维度。
-
模型容量:较高的嵌入维度增加了模型的容量,但也会增加参数量和计算成本。
-
现有模型:许多预训练模型已经设定了标准的嵌入维度,如BERT-base的768维或RoBERTa-large的1024维,可以直接采用。
-
标量(0维)、向量(1维)、矩阵(2维)以及更高维度的数据。
4. 张量大小 (Tensor Size)
定义:指用于表示数据的多维数组的形状,包括batch size、sequence length和embedding dimension。
选型建议:
-
输入张量:取决于上述讨论的最大Token数量(序列长度)和嵌入维度(Embedding Dimension)。
-
输出张量:根据具体任务而定,如分类任务中的类别数量或序列标注任务中的标签数量。
-
对于分类任务,输出张量通常是一个二维张量,其形状为
[batch_size, num_classes]
,表示每个样本属于不同类别的概率分布。 -
对于序列标注任务(如命名实体识别),输出张量的形状可能是
[batch_size, sequence_length, num_labels]
,其中num_labels
是标签的数量。 -
在生成任务中,输出张量可能具有与输入相似的形状,但会根据具体的解码策略有所不同。
-
-
中间层张量:由模型架构决定,模型内部的每一层都会产生自己的中间张量,这些张量的大小取决于该层的设计及其输入输出的要求,会影响计算复杂度和内存需求。例如,在多头自注意力机制中,查询(Q)、键(K)和值(V)矩阵的大小会影响计算复杂度和内存需求。
5. 批次大小 (Batch Size)
定义:一次前向传播中处理的样本数量。
选型建议:
-
GPU/TPU利用率:较大的batch size可以提高GPU/TPU的利用率,加快训练速度,但同时也会增加内存消耗。
-
梯度稳定性:较小的batch size有助于获得更稳定的梯度更新,尤其是在数据集较小的情况下。
-
资源可用性:根据可用硬件资源(如显存)来选择合适的batch size,避免OOM(Out of Memory)错误。
-
实验验证:通过实验测试不同batch size对模型收敛性和最终性能的影响,找到最优设置。
应用实践中的应该如何综合考量相关指标?
在实际应用中,选择这些参数时需要综合考虑任务需求、数据特性、硬件资源以及已有研究成果。通常,对于大多数NLP任务,可以先从现有的预训练模型出发,然后根据实际情况微调相关参数。此外,实验验证是不可或缺的一部分,通过不断尝试和对比,最终确定最适合当前项目的配置。
二、Embedding模型的推理速度受到哪些参数指标的影响?
1.模型参数量
-
影响:模型参数量越大,计算量也越大,导致推理时间增加。更大的模型虽然可能提供更高的精度,但其推理速度通常较慢。
-
优化建议:选择适合任务需求的模型大小,避免不必要的复杂度。对于资源受限的环境,可以考虑使用轻量化模型(如TinyBERT、DistilBERT)。
2. 最大Token数量 (Max Tokens)
-
影响:较长的序列长度意味着更多的token需要处理,这会显著增加推理时间,尤其是在自注意力机制中,因为它的计算复杂度是O(n²),其中n是序列长度。
-
优化建议:根据任务需求和数据分布选择合适的最大Token数量,并尽可能对输入文本进行截断或分片处理,以减少不必要的计算。
3. 嵌入维度 (Embedding Dimension)
-
影响:较高的嵌入维度增加了矩阵运算的规模,从而延长了推理时间。
-
优化建议:在满足任务性能要求的前提下,选择适当的嵌入维度。对于某些应用场景,较低维度的嵌入也可能足够。
4.批次大小 (Batch Size)
-
影响:较大的batch size可以在一定程度上加速推理过程,因为它能够更好地利用并行计算能力。然而,过大的batch size可能会导致内存不足的问题,进而降低效率。
-
优化建议:找到一个既能充分利用硬件资源又不会造成内存溢出的最佳batch size。可以通过实验测试不同设置来确定最优值。
5.硬件资源
-
影响:GPU/TPU的数量和类型直接影响到模型的推理速度。更强大的硬件设备通常能提供更快的速度。
-
优化建议:选择与任务相匹配的硬件配置,必要时可以考虑分布式推理或多GPU部署方案。
6.模型架构
-
影响:不同的模型架构有不同的计算复杂度。例如,Transformer模型中的多头自注意力机制计算成本较高,而RNN/LSTM等循环网络则可能由于递归特性而导致速度较慢。
-
优化建议:选择更适合特定任务和硬件条件的模型架构。例如,在某些情况下,卷积神经网络(CNN)或者简化版的Transformer变体(如EfficientNet、Reformer)可能提供更好的速度-性能权衡。
7.优化器和编译工具
-
影响:使用高效的优化器和编译工具(如TensorRT、ONNX Runtime)可以显著提升推理速度。
-
优化建议:采用专门针对推理阶段优化的工具和技术,确保模型能够在目标平台上高效运行。
8.输入数据预处理
-
影响:复杂的预处理步骤(如分词、规范化)会增加额外的计算开销,影响整体推理速度。
-
优化建议:尽量简化预处理流程,同时保证不会影响模型性能。可以探索使用更高效的库或算法来加快预处理速度。
9.缓存机制
-
影响:对于重复出现的数据或查询,利用缓存机制可以避免重复计算,大大缩短响应时间。
-
优化建议:设计合理的缓存策略,特别是在面对高并发请求时,可以有效提高系统的吞吐量和响应速度。
https://huggingface.co/spaces/mteb/leaderboard
Yuan-embedding-1.0 是专门为中文文本检索任务设计的嵌入模型。 在xiaobu模型结构(bert-large结构)基础上, 采用全新的数据集构建、生成与清洗方法, 结合二阶段微调实现Retrieval任务的精度领先(Hugging Face C-MTEB榜单 [1])。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。