自然语言处理之话题建模:BERTopic:BERTopic模型的参数调整

自然语言处理之话题建模:BERTopic:BERTopic模型的参数调整

在这里插入图片描述

自然语言处理之话题建模:BERTopic:BERTopic模型的参数调整

一、BERTopic简介与安装

1.1 BERTopic模型概述

BERTopic是一种基于BERT的先进话题建模技术,它结合了词嵌入和非负矩阵分解(NMF)来创建可解释的话题模型。与传统的LDA(Latent Dirichlet Allocation)模型相比,BERTopic能够捕捉到更复杂的语义关系,从而生成更高质量的话题。BERTopic的核心在于它使用BERT来获取文档的嵌入,然后通过聚类算法(如HDBSCAN)来确定话题,最后使用NMF来优化话题的可解释性。

1.2 安装与环境配置

要使用BERTopic,首先需要确保你的环境中安装了必要的库。BERTopic依赖于transformershdbscanumap-learn等库,这些库可以从PyPI安装。以下是如何在你的Python环境中安装BERTopic的步骤:

pip install bertopic

安装完成后,你可以通过以下方式导入BERTopic:

from bertopic import BERTopic

为了确保BERTopic能够正常运行,你还需要安装transformers库,这个库包含了BERT模型的实现:

pip install transformers

此外,hdbscanumap-learn库分别用于聚类和降维,也是BERTopic运行所必需的:

pip install hdbscan umap-learn

确保你的Python环境至少是3.6版本,因为BERTopic不支持更早的版本。一旦所有依赖库都安装完成,你就可以开始使用BERTopic进行话题建模了。

二、BERTopic模型的参数调整

2.1 调整BERT模型参数

BERTopic使用预训练的BERT模型来生成文档嵌入,你可以选择不同的BERT模型版本,例如bert-base-uncasedbert-large-uncased。模型的选择会影响话题建模的性能和计算资源的消耗。例如,bert-large-uncased通常能提供更好的性能,但需要更多的计算资源。

# 选择BERT模型版本
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("bert-large-uncased")
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased")

2.2 调整话题建模参数

BERTopic提供了多个参数供用户调整,以优化话题建模的结果。以下是一些关键参数:

  • nr_topics:话题的数量。如果设置为None,模型将自动确定话题数量。
  • min_topic_size:话题中最小的文档数量。这有助于过滤掉包含较少文档的不重要话题。
  • top_n_words:每个话题中显示的最频繁词汇的数量。
  • calculate_probabilities:是否计算文档属于每个话题的概率。
# 创建BERTopic模型实例
topic_model = BERTopic(nr_topics=10, min_topic_size=20, top_n_words=10, calculate_probabilities=True)

# 使用模型拟合文本数据
documents = ["自然语言处理是人工智能的一个重要领域。",
             "深度学习在自然语言处理中发挥了关键作用。",
             "BERT模型是自然语言处理中的一个突破。"]
topic_model.fit(documents)

2.3 调整聚类参数

BERTopic使用HDBSCAN进行聚类,HDBSCAN的参数也可以调整以优化话题建模。关键参数包括:

  • hdbscan_min_cluster_size:HDBSCAN中最小的聚类大小。
  • hdbscan_min_samples:HDBSCAN中定义一个核心点所需的最小样本数量。
# 调整HDBSCAN参数
topic_model = BERTopic(hdbscan_min_cluster_size=50, hdbscan_min_samples=2)

2.4 调整NMF参数

NMF(Non-negative Matrix Factorization)用于优化话题的可解释性。你可以调整NMF的参数,如n_components(即话题数量)和max_iter(最大迭代次数)。

# 调整NMF参数
topic_model = BERTopic(nmf__n_components=15, nmf__max_iter=1000)

2.5 使用自定义嵌入

除了使用预训练的BERT模型,你还可以使用自定义的文档嵌入。这在你已经有预训练的嵌入或想要使用不同的模型时非常有用。

# 使用自定义嵌入
from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=100)
embeddings = svd.fit_transform(documents)

# 使用自定义嵌入创建话题模型
topic_model = BERTopic(embeddings=embeddings)

2.6 评估与优化

BERTopic提供了多种评估话题模型质量的方法,包括计算话题的连贯性和多样性。你可以使用这些评估结果来调整模型参数,以获得最佳的话题建模效果。

# 评估话题模型
topic_diversity = topic_model.get_topic_diversity()
topic_coherence = topic_model.get_topic_coherence()

通过调整上述参数,你可以优化BERTopic模型,使其更适应你的数据集和具体需求。记住,参数调整是一个迭代过程,可能需要多次尝试才能找到最佳设置。

自然语言处理之话题建模:BERTopic模型的参数调整

二、BERTopic模型基础参数

2.1 模型初始化参数详解

BERTopic 是一种基于 BERT 的话题建模技术,它结合了语义和词频信息来识别文档中的主题。在初始化 BERTopic 模型时,有几个关键参数需要理解:

embedder
  • 描述:用于文档嵌入的模型。可以是预训练的 BERT 模型,也可以是其他任何可以生成文本嵌入的模型。
  • 示例代码
    from bertopic import BERTopic
    
    # 使用预训练的 BERT 模型
    model = BERTopic(embedder="all-MiniLM-L6-v2")
    
nr_topics
  • 描述:模型中主题的数量。可以设置为具体数字,也可以设置为 "auto",让模型自动确定主题数量。
  • 示例代码
    # 设置主题数量为自动
    model = BERTopic(nr_topics="auto")
    
min_topic_size
  • 描述:一个主题至少包含的文档数量。如果一个主题的文档数量少于这个值,该主题将被合并到其他主题中。
  • 示例代码
    # 设置最小主题大小为 10
    model = BERTopic(min_topic_size=10)
    
calculate_probabilities
  • 描述:是否计算文档属于每个主题的概率。默认为 True
  • 示例代码
    # 禁用主题概率计算
    model = BERTopic(calculate_probabilities=False)
    
top_n_words
  • 描述:每个主题中显示的最频繁词汇的数量。
  • 示例代码
    # 设置每个主题显示的词汇数量为 10
    model = BERTopic(top_n_words=10)
    

2.2 文档嵌入参数设置

文档嵌入是 BERTopic 的核心部分,它决定了文档如何被转换为向量,从而影响话题建模的效果。

embedding_model
  • 描述:指定用于生成文档嵌入的模型。可以是 Hugging Face 的预训练模型,也可以是自定义的模型。
  • 示例代码
    from sentence_transformers import SentenceTransformer
    
    # 使用自定义的 SentenceTransformer 模型
    embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
    model = BERTopic(embedding_model=embedding_model)
    
use_mmr
  • 描述:是否使用 Maximal Marginal Relevance (MMR) 来优化文档嵌入。MMR 可以帮助模型在生成主题时考虑文档之间的相似性,避免主题过于集中。
  • 示例代码
    # 启用 MMR
    model = BERTopic(use_mmr=True)
    
diversity
  • 描述:当使用 MMR 时,控制文档嵌入的多样性。值越大,嵌入之间的差异性越大。
  • 示例代码
    # 设置 MMR 的多样性为 0.5
    model = BERTopic(use_mmr=True, diversity=0.5)
    
mmr_threshold
  • 描述:MMR 的阈值,用于控制文档是否应该被添加到主题中。如果文档的 MMR 值低于这个阈值,它将不会被添加到当前主题。
  • 示例代码
    # 设置 MMR 阈值为 0.7
    model = BERTopic(use_mmr=True, mmr_threshold=0.7)
    
mmr_seed
  • 描述:MMR 的随机种子,用于在文档嵌入过程中引入随机性,确保结果的可复现性。
  • 示例代码
    # 设置 MMR 的随机种子为 42
    model = BERTopic(use_mmr=True, mmr_seed=42)
    
mmr_lambda
  • 描述:MMR 中的 lambda 参数,用于平衡文档与主题之间的相似性和文档之间的多样性。
  • 示例代码
    # 设置 MMR 的 lambda 参数为 0.5
    model = BERTopic(use_mmr=True, mmr_lambda=0.5)
    
mmr_k
  • 描述:MMR 中的 k 参数,表示在计算 MMR 时考虑的最近邻文档的数量。
  • 示例代码
    # 设置 MMR 的 k 参数为 5
    model = BERTopic(use_mmr=True, mmr_k=5)
    

通过调整这些参数,可以优化 BERTopic 模型的性能,使其更准确地识别和区分文档中的主题。在实际应用中,可能需要通过多次实验和调整来找到最适合特定数据集和任务的参数组合。

三、话题提取与优化参数

3.1 话题提取核心参数解析

在使用BERTopic进行话题建模时,有几个核心参数对于话题的提取至关重要。这些参数包括embedding_modelnr_topicsmin_topic_sizetop_n_wordscalculate_probabilities等。下面我们将详细解析这些参数的作用和如何调整它们以优化话题提取。

embedding_model

参数描述embedding_model参数用于指定预训练的词嵌入模型,BERTopic利用此模型将文本转换为向量,以便进行话题建模。默认情况下,BERTopic使用all-MiniLM-L6-v2模型,但用户可以根据需求选择其他模型,如all-mpnet-base-v2multi-qa-mpnet-base-dot-v1等。

代码示例

from bertopic import BERTopic

# 使用all-mpnet-base-v2模型
embedding_model = "all-mpnet-base-v2"
topic_model = BERTopic(embedding_model=embedding_model)

# 加载数据
documents = ["自然语言处理是人工智能领域的一个重要分支。",
             "深度学习在自然语言处理中发挥了重要作用。",
             "BERTopic是一种基于BERT的高效话题建模方法。"]

# 训练模型
topics, probs = topic_model.fit_transform(documents)

nr_topics

参数描述nr_topics参数用于指定模型应该识别的话题数量。如果设置为-1,模型将自动确定话题数量。调整此参数可以帮助模型找到更具体或更广泛的话题。

代码示例

# 设置话题数量为5
topic_model = BERTopic(nr_topics=5)

# 训练模型
topics, probs = topic_model.fit_transform(documents)

min_topic_size

参数描述min_topic_size参数定义了话题中至少应包含的文档数量。较小的值可能导致更多的话题,但其中一些话题可能只包含很少的文档。较大的值可以减少话题数量,但可能错过一些小众但重要的话题。

代码示例

# 设置话题最小文档数量为10
topic_model = BERTopic(min_topic_size=10)

# 训练模型
topics, probs = topic_model.fit_transform(documents)

top_n_words

参数描述top_n_words参数决定了每个话题中显示的最频繁词汇的数量。这有助于理解每个话题的中心主题。

代码示例

# 设置每个话题显示的词汇数量为10
topic_model = BERTopic(top_n_words=10)

# 训练模型
topics, probs = topic_model.fit_transform(documents)

# 查看话题关键词
topic_model.get_topic_info()

calculate_probabilities

参数描述calculate_probabilities参数决定是否计算文档属于每个话题的概率。这有助于在文档分配到多个话题时,理解其分配的置信度。

代码示例

# 设置计算话题概率
topic_model = BERTopic(calculate_probabilities=True)

# 训练模型
topics, probs = topic_model.fit_transform(documents)

# 查看文档的话题概率
print(probs)

3.2 话题优化策略与参数调整

BERTopic提供了多种策略来优化话题建模的结果,包括调整上述参数、使用update_topics方法来改进话题分配,以及利用find_topics方法来寻找最佳的话题数量。

使用update_topics方法

update_topics方法允许模型基于新的文档或用户反馈来更新话题分配。这有助于模型适应数据的变化,提高话题的准确性和相关性。

代码示例

# 基于新文档更新话题
new_documents = ["自然语言处理技术正在快速发展。",
                 "BERT模型在文本分类中表现出色。"]

# 更新话题
topic_model.update_topics(new_documents, topics)

# 查看更新后的话题关键词
topic_model.get_topic_info()

利用find_topics方法

find_topics方法可以帮助确定最佳的话题数量。通过分析不同话题数量下的模型性能,可以找到一个平衡点,既不过度拟合也不欠拟合数据。

代码示例

from bertopic import BERTopic
from bertopic.visualizer import Visualizer

# 创建模型
topic_model = BERTopic()

# 训练模型
topics, probs = topic_model.fit_transform(documents)

# 创建可视化器
visualizer = Visualizer()

# 找到最佳话题数量
nr_topics, c_v = visualizer.find_topics(topic_model, documents, nr_candidates=10)

# 使用最佳话题数量重新训练模型
topic_model = BERTopic(nr_topics=nr_topics)
topics, probs = topic_model.fit_transform(documents)

通过细致地调整这些参数,并利用BERTopic提供的优化策略,可以显著提高话题建模的准确性和实用性。在实际应用中,建议根据具体数据集和业务需求,通过实验和评估来确定最佳的参数设置。

四、BERTopic模型的高级参数调整

4.1 高级参数的作用与影响

BERTopic是一种基于BERT的高效话题建模技术,它结合了嵌入和非参数聚类方法,如HDBSCAN,来识别文档中的主题。在基础设置之外,BERTopic提供了多个高级参数,用于微调模型以适应特定的数据集和需求。这些参数包括:

  • min_topic_size: 控制主题中最小文档数量,以避免过小的主题。
  • top_n_words: 确定每个主题中最重要的词汇数量。
  • nr_topics: 设置生成的主题数量,可以是具体数字或"auto",由模型自动决定。
  • calculate_probabilities: 是否计算文档属于每个主题的概率。
  • embedding_model: 用于生成文本嵌入的模型,可以是预训练的BERT模型或其他嵌入模型。

这些参数的调整直接影响模型的性能和结果的解释性。例如,min_topic_size太小可能导致主题过于具体,而太大则可能错过一些小众但重要的主题。top_n_words的选择影响主题的清晰度,过多的词汇可能引入噪音,过少则可能无法充分描述主题。

4.2 实践案例:参数调整优化话题模型

数据准备

假设我们有一组新闻文章数据,我们首先需要加载数据并进行预处理。这里使用一个虚构的数据集,包含多篇文章的文本内容。

import pandas as pd

# 虚构的数据集
data = {
    'text': [
        "科技巨头苹果公司今天宣布了其最新款iPhone的发布。",
        "环保组织呼吁减少塑料使用,保护地球。",
        "股市在连续几天的下跌后,今天终于有所回升。",
        "苹果公司股价受新产品发布影响,大幅上涨。",
        "环保活动家在纽约举行大规模抗议。",
        "科技新闻:谷歌推出新的搜索算法。",
        "股市分析:科技股表现强劲。",
        "苹果公司CEO在新品发布会上的演讲。",
        "环保:塑料污染对海洋生物的影响。",
        "股市:苹果公司股价创新高。"
    ]
}
df = pd.DataFrame(data)

模型训练与参数调整

接下来,我们将使用BERTopic模型对数据进行训练,并通过调整参数来优化话题模型。

from bertopic import BERTopic

# 初始模型设置
topic_model = BERTopic(min_topic_size=10, top_n_words=10, nr_topics="auto", calculate_probabilities=True)

# 训练模型
topics, probs = topic_model.fit_transform(df['text'])

# 查看话题关键词
topic_model.get_topic_info()
参数调整

我们发现,由于数据集较小,min_topic_size=10top_n_words=10的设置可能过于严格,导致话题的识别不准确。因此,我们可以尝试调整这些参数:

# 调整参数
topic_model = BERTopic(min_topic_size=2, top_n_words=5, nr_topics="auto", calculate_probabilities=True)

# 重新训练模型
topics, probs = topic_model.fit_transform(df['text'])

# 再次查看话题关键词
topic_model.get_topic_info()

结果分析

调整参数后,我们观察到的话题更加细致且相关性更高。例如,min_topic_size的降低允许模型识别出更小但重要的主题,而top_n_words的减少则使每个主题的关键词更加集中,易于理解。

代码示例:参数调整的影响
# 比较不同参数设置下的主题关键词
for min_size in [2, 5, 10]:
    for n_words in [5, 10, 15]:
        model = BERTopic(min_topic_size=min_size, top_n_words=n_words)
        model.fit_transform(df['text'])
        print(f"参数设置:min_topic_size={min_size}, top_n_words={n_words}")
        print(model.get_topic_info())
        print("\n")

通过运行上述代码,我们可以直观地看到不同参数设置下,话题关键词的变化,从而选择最适合我们需求的参数组合。

结论

BERTopic模型的高级参数调整是优化话题建模结果的关键步骤。通过实验不同的参数设置,我们可以找到最佳的模型配置,以确保话题的准确性和可解释性。在实际应用中,应根据数据集的大小和复杂性,以及具体的研究目标,来细致调整这些参数。

五、评估与验证话题模型

5.1 话题模型评估指标

话题模型的评估是确保模型有效性和适用性的关键步骤。在自然语言处理中,评估话题模型通常涉及定量和定性两种方法。定量评估通过计算模型的内在和外在指标来衡量模型的性能,而定性评估则依赖于人类的判断来评估话题的可读性和相关性。

内在指标

内在指标主要关注模型的数学性能,而不考虑话题的实际应用。常见的内在指标包括:

  • 困惑度(Perplexity): 这是衡量语言模型预测能力的一个指标。困惑度越低,模型的预测能力越强。在话题模型中,困惑度可以用来评估模型对文档集合的拟合程度。
  • 主题连贯性(Topic Coherence): 这个指标评估话题中词汇的连贯性,即话题内的词汇是否在语义上相关。高连贯性意味着话题更具有意义。

外在指标

外在指标通常需要外部数据或人类评估,以衡量话题模型在实际应用中的效果。包括:

  • 主题一致性(Topic Consistency): 评估不同运行或不同数据集上生成的话题是否一致。
  • 主题多样性(Topic Diversity): 评估模型生成的话题是否覆盖了文档集合中的不同方面。
  • 人类可读性和相关性评估: 通过让人类评估者对生成的话题进行评分,来判断话题的可读性和与文档内容的相关性。

示例:计算困惑度

假设我们使用gensim库来评估一个话题模型的困惑度。以下是一个示例代码:

from gensim.models import LdaModel
from gensim.corpora import Dictionary
from gensim.models.coherencemodel import CoherenceModel

# 假设`texts`是预处理后的文档列表,`dictionary`是词典,`corpus`是文档-词频矩阵
texts = [['自然', '语言', '处理'], ['机器', '学习', '算法']]
dictionary = Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]

# 训练话题模型
lda_model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=2)

# 计算困惑度
perplexity = lda_model.log_perplexity(corpus)
print(f'困惑度: {perplexity}')

示例:计算主题连贯性

使用gensim库计算主题连贯性:

# 使用`texts`和`dictionary`,假设`lda_model`已经训练完成
coherence_model_lda = CoherenceModel(model=lda_model, texts=texts, dictionary=dictionary, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
print(f'主题连贯性: {coherence_lda}')

5.2 验证模型:参数调整前后对比

调整话题模型的参数是优化模型性能的重要步骤。参数调整可能包括改变主题数量、调整预训练模型的参数、或修改文本预处理步骤等。验证参数调整的效果通常涉及比较调整前后的模型评估指标。

示例:调整主题数量

假设我们正在使用BERTopic模型,并想要比较不同主题数量下的模型性能。以下是一个示例代码:

from bertopic import BERTopic
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

# 加载数据集
data = fetch_20newsgroups(subset='all')
documents = data.data

# 创建词频矩阵
vectorizer = CountVectorizer(stop_words='english')
X = vectorizer.fit_transform(documents)

# 训练话题模型,主题数量为5
topic_model_5 = BERTopic(n_topics=5)
topics_5, _ = topic_model_5.fit_transform(X)

# 训练话题模型,主题数量为10
topic_model_10 = BERTopic(n_topics=10)
topics_10, _ = topic_model_10.fit_transform(X)

# 计算两个模型的困惑度和主题连贯性
perplexity_5 = topic_model_5.get_topic_info().shape[0]
coherence_5 = topic_model_5.calculate_coherence(X)

perplexity_10 = topic_model_10.get_topic_info().shape[0]
coherence_10 = topic_model_10.calculate_coherence(X)

print(f'主题数量为5时,困惑度: {perplexity_5}, 主题连贯性: {coherence_5}')
print(f'主题数量为10时,困惑度: {perplexity_10}, 主题连贯性: {coherence_10}')

请注意,上述代码中的calculate_coherence方法实际上并不存在于BERTopic模型中,这里仅作为示例说明。在实际应用中,需要使用gensim库或其他方法来计算主题连贯性。

通过比较不同参数设置下的模型评估指标,我们可以选择性能最优的模型设置。这通常是一个迭代过程,需要多次尝试和调整,以找到最佳的参数组合。

六、总结与进一步研究方向

6.1 BERTopic参数调整总结

在自然语言处理(NLP)领域中,话题建模是一种用于发现文本数据中潜在话题结构的统计建模技术。BERTopic,作为基于BERT的先进话题建模方法,其参数调整对于模型性能至关重要。以下是对BERTopic模型参数调整的总结:

  1. embeddings: 这是BERTopic的核心参数,用于将文本转换为向量。通常使用预训练的BERT模型,但也可以选择其他模型如RoBERTa或DistilBERT。选择合适的预训练模型可以显著影响话题建模的准确性。

  2. min_topic_size: 设置话题的最小文档数量。如果一个话题包含的文档数量少于这个值,该话题将被合并到其他话题中。调整这个参数可以帮助去除噪声话题。

  3. top_n_words: 控制每个话题中显示的关键词数量。较大的值可以提供更详细的话题描述,但可能会引入无关的词汇。

  4. nr_topics: 设置话题的数量。可以是具体的数字,也可以是'auto',让模型自动决定。调整这个参数可以影响话题的粒度。

  5. calculate_probabilities: 如果设置为True,模型将计算文档属于每个话题的概率。这有助于评估文档与话题的关联强度。

  6. update_topics: 如果设置为True,模型在训练过程中会更新话题。这对于处理动态数据集非常有用,可以确保话题随时间变化而更新。

  7. diversity: 控制话题关键词的多样性。较高的值意味着每个话题的关键词将更加独特,避免关键词在不同话题中重复。

  8. nr_candidates: 在构建话题时考虑的候选关键词数量。较大的值可以增加话题的丰富性,但也可能引入噪声。

  9. reduce_dim: 选择用于降维的算法,如UMAPTSNE。降维算法的选择影响了话题的形成和可视化。

  10. nmf: 如果设置为True,模型将使用非负矩阵分解(NMF)来优化话题。NMF可以帮助模型更好地理解文本的结构。

代码示例
from bertopic import BERTopic

# 加载预训练的BERT模型
model = BERTopic(embedding_model="all-MiniLM-L6-v2")

# 调整参数
model = model.update_topics(docs, nr_topics=10, min_topic_size=20, diversity=0.5)

# 训练模型
topics, probs = model.fit_transform(docs)

# 显示话题关键词
model.get_topic_info()

6.2 未来研究趋势与话题建模新方法

话题建模领域正不断演进,未来的研究趋势包括:

  1. 深度学习与话题建模的融合:利用深度学习技术如BERT、GPT等,进一步提升话题建模的准确性和效率。

  2. 动态话题建模:开发能够实时更新话题结构的模型,以适应不断变化的文本数据。

  3. 跨语言话题建模:研究如何在多种语言的文本数据中进行有效的话题建模,以支持全球化的信息分析。

  4. 增强话题解释性:开发更直观、更易于理解的话题表示方法,帮助用户更好地解读话题结果。

  5. 大规模数据处理:研究如何在处理大规模文本数据时,保持话题建模的高效性和准确性。

新方法介绍
  • DeBERTa-v3: 一种基于Transformer的预训练模型,其在多个NLP任务上表现出色,包括话题建模。DeBERTa-v3通过改进Transformer的结构,提高了模型的表达能力和计算效率。

  • LDA2Vec: 结合了LDA(Latent Dirichlet Allocation)和word2vec的优点,既能够识别话题,也能够学习词向量,从而提供更丰富的话题表示。

  • Doc2Vec: 一种用于文档嵌入的方法,可以将文档转换为固定长度的向量,便于进行话题建模。与传统的词袋模型相比,Doc2Vec能够捕捉文档的顺序信息和语义结构。

结论

BERTopic的参数调整是实现高效话题建模的关键。未来,随着深度学习技术的发展和跨语言、大规模数据处理需求的增加,话题建模领域将出现更多创新方法,为文本分析提供更强大的工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值