由李飞飞等人著作的《AGENT AI: SURVEYING THE HORIZONS OF MULTIMODAL INTERACTION》是一篇关于多模态交互和Agent AI最全面的论文以及未来展望,这份报告可能代表着未来 AI 商业化最有价值的方向之一,分享给大家!
- Agent AI的定义与目标:
-
Agent AI是一类交互系统,能够感知视觉刺激、语言输入和其他环境基础数据,并产生有意义的具体行动。
-
Agent AI被视为实现人工通用智能(AGI)的有前景途径之一。
- 多模态AI系统:
- 多模态AI系统将成为我们日常生活中的普遍存在,通过将这些系统体现为物理和虚拟环境中的代理,可以提高它们的交互性。
- Agent AI的整合与应用:
- 探讨了如何将Agent AI与大型基础模型(如LLMs和VLMs)整合,以及这些模型在机器人操控、导航和人类动作生成中的应用。
- Agent AI的学习策略:
- 包括强化学习(RL)、模仿学习(IL)、传统RGB学习、上下文学习等方法。
- Agent AI的分类:
- 涵盖了通用代理领域、具身代理、交互代理、模拟和环境代理、生成代理等多个类别。
- Agent AI的应用任务:
- 在游戏、机器人技术、医疗保健等领域的应用,包括NPC行为、人-NPC交互、基于代理的游戏分析、场景合成等。
- 跨模态、跨领域和跨现实的Agent AI:
- 探讨了Agent AI在跨模态理解、跨领域理解和模拟到现实转移(Sim-to-Real Transfer)方面的研究进展。
- Agent AI的持续自我改进:
- 讨论了基于人类交互数据和基础模型生成数据的Agent AI如何实现持续学习和自我改进。
- Agent AI数据集和基准测试:
- 提出了两个新的基准测试:“CuisineWorld”多代理游戏数据集和“VideoAnalytica”音视频语言预训练数据集。
- 伦理考量:
- 讨论了Agent AI的伦理问题,包括数据隐私、使用和潜在的社会影响。
- 多样性声明:
- 强调了在多模态和代理AI研究中考虑多样性和包容性的重要性。
这份论文提供了Agent AI领域的全面概述,包括其理论基础、技术进展、应用案例和未来发展方向,以及伴随技术发展而来的伦理和社会问题。
以下是全文与翻译。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。