强化学习之父Richard Sutton悄悄搞了个大的,提出了一个简单思路:奖励聚中。这思路简单效果却不简单,等于是给几乎所有的强化学习算法上了一个增强buff,所以这篇论文已经入选了首届强化学习会议(RLC 2024),对于强化学习领域的同学来说,非常值得一读。
其实不止这篇,近年因为大模型的火爆,有关强化学习的研究也算是烫门,在各大顶会顶刊(比如CVPR、Science)上都有成果发表,属实是发文香饽饽了。而且作为实现AGI无可替代的组成部分,强化学习不仅无需标注数据,**具有探索性和适应性,同时也拥有强大的泛化能力和实时决策能力,**是我们解决复杂现实问题的绝佳选择。
与其他模型结合
将强化学习与其他类型的模型结合是比较常见的创新思路,这种方法可以提高强化学习的性能和泛化能力。比如深度强化学习,利用神经网络来逼近值函数或策略函数,从而处理高维输入和输出空间的问题。此外,我们还可以考虑将强化学习与注意力机制、GNN等其他技术结合,以进一步提高其性能和效率。
+注意力机制
在强化学习中,智能体需要根据环境状态做出决策,而注意力机制可以通过计算不同状态或动作元素的权重值来突出对决策最重要的信息,帮助智能体提高学习效率和决策质量。两者的结合不仅提升了算法的性能,还扩展了强化学习在复杂环境和任务中的应用范围。
比如AlignSAM框架,核心创新点:
通过强化学习来自动生成提示,以便将SAM适应到开放环境中。这一框架的关键创新包括:1) 利用强化学习代理来迭代优化分割预测,以模拟人类标注者推荐提示位置的过程;2) 引入语义重校准模块,为选定的提示位置提供精确的二元分类标签,增强模型处理包含显式和隐式语义任务的能力。
+图神经网络
一边GNN能深入挖掘图中的模式和关系,另一边强化学习擅长在动态环境中进行序列决策,尤其是在需要长期规划和适应环境变化的情况下。这两者结合,可以开发出能够同时学习图结构表示和做出最优决策的智能模型。
比如G2A2C框架,核心创新点:
G2A2C通过将攻击过程(节点生成和边连接)建模为马尔可夫决策过程,并直接从目标模型查询中学习,避免了依赖于可能误导的替代模型梯度,从而在不牺牲性能的情况下提高了攻击的实用性和有效性。
在节点生成阶段,生成的节点特征既要不引人注意又要具有恶意性;在边连接阶段,根据可学习的条件下概率分布将注入的节点连接到图中的其他节点。
自身改进
另一种创新思路是针对强化学习算法本身进行改进,以提高其收敛速度、稳定性和适应性。比如我们可以研究更高效的探索策略、设计更好的奖励函数,或者开发更鲁棒的策略更新规则等等。此外,我们还可以考虑从理论层面进行改进,比如层次化强化学习和多智能体强化学习。
层次化强化学习
强化学习的一种扩展方法。它将原本单一的强化学习代理划分为多个层次的子代理,每个子代理负责解决问题的不同方面。这种分层结构有助于降低问题的复杂度,让学习过程更加高效。
比如EarnHFT层次化强化学习框架,核心创新点:
通过三个阶段来解决HFT中的两个主要挑战:数据效率低下和市场趋势变化剧烈导致的性能下降。EarnHFT通过计算Q-教师来提升训练效率,构建多样化的RL代理池以适应不同的市场趋势,以及训练一个动态路由器来选择适合当前市场状态的代理,从而在高频交易中实现稳定且高效的性能。
多智能体强化学习
强化学习的另一类扩展,专注于多个智能体在共享的环境中学习和决策的场景。与单智能体强化学习相比,它需要额外考虑智能体间的相互作用、协作与竞争等复杂动态。
比如FoX框架,核心创新点:
FoX旨在解决多智能体环境中的探索问题,特别是针对部分可观测性和随着智能体数量增加而呈指数级增长的探索空间。FoX引入了一种基于形成的等价关系来缩减多智能体强化学习中的探索空间,并提出了一种形成感知的探索策略,让智能体能够基于局部观察结果有效地识别和访问多样化的形成状态,从而提高在复杂多智能体环境中的探索效率和学习性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。