【AAAI 2025】多尺度对比特征融合CDFA,即插即用,极大增强特征表达!

一、论文信息

论文题目:ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement

中文题目:ConDSeg:一种通过对比驱动特征增强的通用医学图像分割框架

核心速览:本文提出了一种名为ConDSeg的通用医学图像分割框架,通过对比驱动的特征增强来解决医学图像分割中的“软边界”和共现现象两大挑战

二、论文概要

Highlight

图1:医学图像分割中的主要挑战。

图3:不同方法的Grad-CAM可视化。它展示了我们模型和TGANet在共现和单独出现情况下的注意力区域。

1. 研究背景:

  • 研究问题:医学图像分割在临床决策、治疗规划和疾病监测中扮演着重要角色。然而,由于医学图像中前景和背景之间存在“软边界”,以及图像照明条件差、对比度低,导致前景和背景的可区分性降低,使得准确分割成为挑战。此外,医学图像中广泛存在的共现现象,使得模型容易学习到与目标本身无关的共现特征,导致预测不准确。

  • 研究难点:医学图像分割面临的主要挑战包括图像中前景和背景之间的模糊边界(软边界)以及图像中广泛存在的共现现象。这些挑战导致模型难以准确提取和区分目标特征,从而影响分割性能。

  • 文献综述:近年来,深度学习方法在医学图像分割领域显示出巨大潜力,如U-Net、U-Net++、PraNet、TGANet、CASF-Net等不断改进分割性能。尽管现有深度学习方法在医学图像分割方面取得了重大突破,但准确分割仍然是一个挑战。为了解决这些问题,本文提出了一种名为ConDSeg的通用医学图像分割框架,通过对比驱动的特征增强来提高模型的分割性能。

2. 本文贡献:

  • 对比驱动特征增强:提出了一种名为ConDSeg的通用医学图像分割框架,通过对比驱动特征增强来解决医学图像中前景和背景之间的“软边界”问题,以及图像中光照不足和对比度低导致的可区分性差的问题。ConDSeg框架包括一致性增强训练策略和语义信息解耦模块,以及对比驱动特征聚合模块和尺寸感知解码器。

  • 对比驱动特征聚合模块(CDFA):提出对比驱动特征聚合模块,接收来自语义信息解耦模块的前景和背景特征,指导多级特征融合和关键特征增强,进一步区分待分割实体。

  • 实验结果:在五个具有挑战性的公共医学图像分割数据集上进行了广泛的实验,包括Kvasir-SEG、Kvasir-Sessile、GlaS、ISIC-2016和ISIC-2017,覆盖了三种医学图像模态的任务。ConDSeg在所有五个数据集上均取得了最先进的性能,验证了该框架的先进性和普遍适用性。

三、方法

图2:所提出的ConDSeg的整体框架。

图4:CDFA的结构。

CDFA模块通过显式建模前景特征(foregroundfeature,fg)和背景特征(backgroundfeature,fg)的对比关系,增强输入特征图F的语义表达能力。实现原理:

1. 计算注意力权重:在每个空间位置 (i,j),CDFA 通过包含前景和背景细节的 K ×K 窗口计算注意力权重。输入特征图F首先通过多个 CBR(卷积、BatchNorm和ReLU) 块进行初步融合,然后通过线性层映射到值向量V。接着,V在每个局部窗口展开,准备为每个位置聚合邻域信息。

2. 生成注意力权重:前景和背景特征图通过两个不同的线性层处理,生成相应的注意力权重A_{fg}和A_{bg}。

3. 加权聚合特征表示:通过 Softmax 函数激活前景和背景的注意力权重,然后对展开的值向量V进行加权,以获得每个位置的加权值表示。

4. 密集聚合特征表示:最后,将加权值表示密集聚合以获得最终的输出特征图。

四、实验分析

1. 本文在五个具有挑战性的公共数据集上进行了实验,这些数据集包括Kvasir-SEG、Kvasir-Sessile、GlaS、ISIC-2016和ISIC-2017,涵盖了内窥镜、全切片图像(WSI)和皮肤镜三种不同的医学图像模态。实验结果表明,本文提出的ConDSeg方法在所有数据集上均取得了最先进的性能。ConDSeg在Kvasir-Sessile数据集上的mIoU(平均交并比)为84.6%,mDSC(平均Sorensen-Dice系数)为90.5%;在Kvasir-SEG数据集上,mIoU为81.2%,mDSC为89.1%;在GlaS数据集上,mIoU为85.1%,mDSC为91.6%。在ISIC-2016数据集上,mIoU为86.8%,mDSC为92.5%;在ISIC-2017数据集上,mIoU为80.9%,mDSC为88.3%。这些结果均优于其他对比方法,如U-Net、U-Net++、PraNet、TGANet等。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于 AAAI 2025 的会议论文日程 目前尚未有具体公开的 AAAI 2025 论文日程安排信息,因为该年份的会议通常会在前一年或更早时间才发布详细的计划和接受的论文列表[^1]。然而,可以参考以往的 AAAI 大会模式来推测其可能的日程结构。 #### 常规流程概述 AAAI(The Association for the Advancement of Artificial Intelligence)大会一般分为以下几个部分: - **提交截止日期**:通常在前一年的夏季至秋季之间公布论文提交的时间窗口。 - **通知作者阶段**:评审完成后,大约在当年年底之前向作者发送录用结果的通知。 - **最终版本提交**:被录取的论文需按照指定模板完成修改并重新提交。 - **电子材料准备**:类似于 COLING 2022 中提到的内容,在正式召开前数周准备好所有预印本供参会者查阅[^2]。 对于具体的论文展示环节而言,以下是常见的组成部分: - 口头报告(Oral Presentations) - 海报张贴(Poster Sessions) 考虑到 ICLR 2019 曾经特别关注过对抗样本等领域研究趋势的情况[^3],预计未来几年内的顶级人工智能学术论坛也会继续围绕这些热点展开深入探讨;而 ECCV 和 ICML 则分别代表计算机视觉以及机器学习方向上的高水平成果交流平台[^4]。 尽管现在还没有确切消息表明哪些主题将成为明年重点讨论对象之一 ,但基于过去几年的发展轨迹来看,“大模型”、“多模态融合技术应用进展”,还有“强化学习新算法探索”等方面很可能会成为重要议题。 ```python # 示例代码用于说明如何查询特定网站获取最新动态(仅作为演示用途) import requests from bs4 import BeautifulSoup def fetch_conference_info(url): response = requests.get(url) soup = BeautifulSoup(response.text,"html.parser") titles=soup.find_all('h2') # Assuming h2 tags contain relevant info like schedules etc. return [title.string.strip() for title in titles] conference_url="http://www.aaai.org/" # Replace with actual URL when available closer to event date print(fetch_conference_info(conference_url)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值