如果你对人工智能、推理任务或者机器学习有一点兴趣,最近我发现了一个超级有意思的开源项目——Open Thoughts[1]。它的目标是训练出在数学和代码推理上能超越一些大模型的小型模型。这个项目不仅让人眼前一亮,还能让你感受到开源社区的巨大力量。
今天,我就带你一起来看看这个项目是怎么运作的,为什么它值得关注,以及你如何参与进来。
一开始,Open Thoughts 想做什么?
简单来说,Open Thoughts 是一个通过合作打造顶尖推理数据集的项目,最终目的是训练出比现有大模型还要高效的小型推理模型。你没看错,是小型模型!很多时候,大模型虽然强大,但计算量大、训练和部署都费劲。Open Thoughts 通过提供高质量的数据集,帮助小型模型在推理任务上表现得更加出色。
尤其是,Open Thoughts 的目标是让这些模型在数学和代码推理的基准测试中,超越一些当前比较火的大模型,比如 DeepSeek-R1-Distill-Qwen-32B 和 DeepSeek-R1-Distill-Qwen-7B。
让我们来看看这个项目的进展吧
Open Thoughts 并不是空谈,它已经有了相当不错的成绩。比如说,OpenThoughts-114k 数据集 就在 Hugging Face 上成为了 #2 热度数据集,而且 OpenThinker-7B 模型 的表现也得到了大家的认可。
这些成绩并非偶然,Open Thoughts 在多个推理任务上都取得了不错的成绩,尤其是在数学和代码推理方面。看完这些成绩后,我不禁想,真的是值得我们关注的项目!
模型和数据集都开放了!
Open Thoughts 的另一个大亮点就是完全开源。没错,它的模型、数据集、训练和评估代码全部公开,任何人都可以使用、修改和分享。这不仅对开发者、研究者来说是一个巨大的资源宝库,也让整个开源社区的成员可以共享进步。
举个例子,OpenThinker-7B 是一个 7B 参数的小型模型,它的设计目标就是在保持小巧的同时,能够在推理任务中展现出不输大模型的能力。而 Bespoke-Stratos-7B 则是另一个同样值得注意的模型,也具有相似的目标。
另外,OpenThoughts-114k 数据集 专注于推理任务,包含了海量的数据样本,可以用来训练和评估模型。
性能数据,看得见的进步
为了让大家对这些模型的表现有更直观的了解,下面是它们在一些推理任务上的对比:
从这个表格中我们可以看到,虽然 OpenThinker-7B 并不是在所有任务上都表现最强,但它的综合表现确实很不错,尤其是在数学和代码推理的任务上,它的高效性和稳定性让人印象深刻。
开源的魅力
为什么 Open Thoughts 能够这么快速获得关注?很大一部分原因就是它完全开源。所有的模型权重、数据集、训练和评估代码,甚至数据生成的工具都已经公开。这让整个开发者社区能够快速上手,同时也为很多研究者提供了一个开放的实验平台。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。