导语
2025年元旦,卫宁健康提出“AI Everywhere 全场景赋能”的发展方向,产品设计以AI为核心,将承担数据专家和AI专家的新角色。恰逢DeepSeek的创新大大加速了AI在医疗行业的应用。此次发布医疗大模型WiNGPT 2.8和医护智能助手WiNEX Copilot 2.1,全面对接DeepSeek,助力卫宁健康AI医疗突进之路进入快车道!
DeepSeek已然成为下一场AI变革的焦点。随着技术成熟迭代,模型竞相追赶,彼此鸿沟缩小,从“模型为先”到“应用为王”成为新的发展趋势。具有丰富应用场景的医疗领域为AI技术落地开辟了广阔天地。
2025年,卫宁健康产品设计将围绕AI智能化创新,实践“Copilot for Everything”行动计划,为用户提供AI增强医疗产品的同时,也在内部的代码开发、文档设计、运维知识服务查询等环节引入AI。从研发生产体系,到赋能智能医疗全场景,全速驱动生产力转型与突破。
卫宁健康 “Copilot for Everything”行动计划
在大语言模型快速发展的当下,卫宁健康人工智能医护助手WiNEX Copilot与医疗大语言模型WiNGPT持续迭代,近****日,正式发布WiNEX Copilot 2.1与WiNGPT 2.8版本,全面对接DeepSeek,进一步提升产品智能能力和生态共融。
01.
WiNEX Copilot 2.1全新特性
聚焦场景、模型、平台
在2024年发布的WiNEX Copilot 2.0基础上,最新迭代版WiNEX Copilot 2.1进一步聚焦场景深化、模型支持、平台能力三大方向,覆盖临床、护理、医技等关键医疗场景,贯穿诊前、诊中、诊后全流程,全面深化医疗临床与管理场景质控能力与移动端场景拓展。
WiNEX Copilot 产品架构
一、AI增强场景深化
场景质控效能再提升
在与CDSS深度融合后,WiNEX Copilot 2.1内置的风险预警叠加新模型能力,支持质控实时校验与实时预警,再度提升临床与管理类场景质控效能。例如电子病历书写、患者血液管理等场景的效率进一步提高,并降低错误率和资源的不合理使用。新版本新增Copilot智能费用管理助手,对患者就医全流程进行实时费用监管与决策,加强用费合规性。
AI从PC延伸到移动端
卫宁健康移动产品WiNEX MY搭载WiNEX Copilot 2.1,使AI能力不再局限于PC端,在移动场景中,医护有了“口袋里的AI”,例如语音查房、知识查询、流程管理等场景将变得更加智能和便利。本次移动端主要发布场景包含“移动知识助手”及“智能交接班”。
二、模型新增DeepSeek接入
卫宁健康新一代产品WiNEX以开放架构理念进行底层设计。这一架构下,WiNEX产品体系可灵活承载技术迭代更新,满足多元化产品生态的共赢共生。基于开放理念,WiNEX Copilot采用AI原生设计形态,支持对接各类大语言模型,并在统一平台管理。已支持Qwen2.5、LlaMA3、MiniMax、INF、Yi、InternLM3等。WiNEX Copilot 2.1版本在原有基础上,支持快速接入DeepSeek。
用户既可本地化部署,也可通过WiNEX Copilot 2.1远程访问互联网上的DeepSeek服务,Copilot 2.1均可对其进行管理和控制。我们目前支持DeepSeek-R1-32B的本地化部署,可与WiNGPT同时部署,用户可根据场景需求选择不同的模型。
模型新增DeepSeek-R1接入
接入DeepSeek-R1-32B的WiNEX Copilot 2.1近日已在北京大学人民医院部署上线,支持电子病历智能助手、语音查房等场景。
三、平台能力升级
底层模型要赋能医疗场景应用,真正发挥AI能力,往往需由平台在其间衔接和管理。完善平台的各项能力,是效率提升的一大关键。WiNEX Copilot 2.1在平台管理上进一步升级,优化提示词模板、功能组件以及AI Agent,使前端业务场景接入更高效。
· 提示词模板化:通过扩展提示词模板,覆盖更丰富的业务场景。无论是复杂的推理分析,还是日常的文字提取处理,都可以灵活调用模板,快速生成精准的提示词。
· AI Agent智能化:全新的任务流框架,可采用大模型路径规划模式,根据任务需求智能选择最优路径,大幅提升执行准确率和效率。
· 场景功能组件化:为提升业务接入效率,我们将文书生成类及总结提取类功能进行组件化封装,兼容PC和移动端。用户可灵活调用功能组件,快速对接业务。
WiNEX Copilot 2.1 Agent 列表
02.
WiNGPT 2.8
借力DeepSeek强化模型
卫宁健康医疗大语言模型WiNGPT历经1.0、2.0到2024年发布的2.7版本,一路精进打磨,始终紧跟最前瞻的技术创新,基于最先进的开源大语言模型进行后训练,特别在医疗任务、信息抽取、数学能力等方面获得显著提升。
WiNGPT 2.7在通用能力和医疗能力上,已较前期版本有明显提升,并完成了多种国产CPU和GPU服务器的测试和验证工作。WiNGPT 2.8借力DeepSeek 的AI推理,成为更加全面、性能更强的医疗大模型。主要提升如下:
· 指令数据量增加:新增指令数据约95w,达227.8w;新增大量数学、代码等推理类型指令集;token长度达到8192。模型逻辑推理能力进一步提升。
· 指令答案重构:对指令数据中逻辑推理类指令答案范式进行重构,进一步提升答案质量。模型思考内容来自DeepSeek-V3、DeepSeek-R1、WiNGPT 2.7等模型产生的思维链,精简冗长思考内容,生成富含反思和验证机制的答案。整体指令重构率达70%,其中医疗指令重构达95%。
· 接入DeepSeek-R1:强化思维链(Chain of Thoughts)方法,同循证医学过程融合,提升医疗问题推理的准确性。在继承DeepSeek-R1本身能力的同时,提升医疗问题解决能力。其信息抽取能力在Zero-shot 的情况中,准确率达93%,质控具体场景准确率超过95%。
· 联网智能检索:实现对PubMed数据库的联网检索,针对研究问题查阅相关文献,所有回答内容都有参考文献支持。
· 整体性能提升:经过后训练的微调和对齐,WiNGPT 2.8整体性能较前一代提升约3%,在医疗场景中有约3%-5%的显著提升。
WiNGPT 联网 PubMed 搜索效果
03.
WiNGPT部署优化
适配国产信创硬件
大语言模型需要有效部署在医疗生产环境中,在实际技术落地中,批量化和工程化的部署必须充分考虑硬件资源要求、运维复杂性、安全性、隐私性等多方面因素。WiNGPT基于前期试点医院的部署应用情况,进行了针对性的优化提升。
· 私有化部署优化:实现模型文件加密、模型量化、推理性能优化等,满足医院对安全性和隐私性的要求。采用先进的推理框架和接口规范,提升部署灵活性和适配性。
· 国产信创支持:WiNGPT在多种国产硬件上开展了适配、推理部署和性能测试工作。目前已支持国内领先的硬件厂商如华为、海光、燧原、沐曦等算力芯片。通过适配多种国产硬件平台,WiNGPT兼容性和灵活性进一步增强,可满足不同场景需求。
WiNEX Copilot和WiNGPT的迭代之路仍在继续。新的一年,医疗AI浪潮势必加速到来,卫宁健康将继续深耕该领域,推动AI应用创新,拥抱领先的技术理念和最新AI成果,凭借自身深厚积累,快速融入医疗数智新生态,助力更多医疗机构乘势向上。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。