一文搞懂多模态学习(多模态融合 + 跨模态对齐)

多模态学习(Multimodal Learning)是一种通过整合多种数据模态(如文本、图像、音频、视频等)来提升模型对复杂信息的理解能力的技术。其核心目标是利用不同模态的互补性与冗余性,突破单一模态的信息局限,模拟人类多感官协同认知的能力。

多模态融合和跨模态对齐是多模态学习的两个核心方面。多模态融合通过整合不同模态的数据来提高模型的感知和理解能力;而跨模态对齐则确保不同模态数据之间的准确对应,为融合提供可靠的基础。

一、多模态融合:整合信息

什么是多模态融合(MultiModal Fusion)?多模态融合能够充分利用各模态之间的互补优势,将来自不同模态的信息整合成一个稳定且全面的多模态表征。

表征学习通过从原始数据中自动提取各模态有效特征,生成稳定全面的多模态表征。

表征学习(Representation Learning) ≈ 向量化(Embedding)(架构师带你玩转AI)

图片

从数据处理的层次角度来划分,多模态融合可分为数据级融合、特征级融合和目标级融合。

一、数据级融合(Data-Level Fusion):

数据级融合是在预处理阶段将不同模态的原始数据直接合并,适用于高度相关和互补的数据场景。

二、特征级融合(Feature-Level Fusion):

特征级融合是在特征提取之后、决策之前进行的融合。不同模态的数据首先被分别处理,提取出各自的特征表示,然后将这些特征表示在某一特征层上进行融合。广泛应用于图像分类、语音识别、情感分析等多模态任务中。

三、目标级融合(Decision-Level Fusion):

目标级融合是在各单模态模型决策后,将预测结果进行整合以得出最终决策,适用于多模型预测结果综合的场景,如多传感器数据融合、多专家意见综合等。

图片

二、跨模态对齐:准确对应

什么是跨模态对齐MultiModal Alignment)?跨模态对齐是指利用各种技术手段,使不同模态的数据(例如图像、文本、音频等)在特征、语义或表示层面上能够达到匹配与对应。
跨模态对齐主要分为两大类:显式对齐和隐式对齐。

什么是显示对齐(Explicit Alignment)?直接建立不同模态之间的对应关系,包括无监督对齐和监督对齐。
无监督对齐利用数据自身特性自动发现模态间对应关系,如CCA和自编码器;监督对齐则利用标签信息指导对齐,如多模态嵌入和多任务学习模型。

什么是隐式对齐(Implicit Alignment)?不直接建立对应关系,而是通过模型内部机制隐式地实现跨模态的对齐。这包括注意力对齐和语义对齐。
一、注意力对齐
通过注意力机制动态地生成不同模态之间的权重向量,实现跨模态信息的加权融合和对齐。
  • Transformer模型:在跨模态任务中(如图像描述生成),利用自注意力机制和编码器-解码器结构,自动学习图像和文本之间的注意力分布,实现隐式对齐。

  • BERT-based模型:在问答系统或文本-图像检索中,结合BERT的预训练表示和注意力机制,隐式地对齐文本查询和图像内容。

二、语义对齐
在语义层面上实现不同模态之间的对齐,需要深入理解数据的潜在语义联系。
  • 图神经网络(GNN):在构建图像和文本之间的语义图时,利用GNN学习节点(模态数据)之间的语义关系,实现隐式的语义对齐。

  • 预训练语言模型与视觉模型结合:如CLIP(Contrastive Language-Image Pre-training),通过对比学习在大量图像-文本对上训练,使模型学习到图像和文本在语义层面上的对应关系,实现高效的隐式语义对齐。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 多模态融合的概念 多模态融合是指将来自不同传感器或数据源的不同类型的数据(即不同的模态)结合起来,以获得更全面的理解和更好的决策能力。这些模态可能包括图像、音频、文本和其他形式的数据。通过综合多种信息来源,系统能够更好地理解环境并做出更加准确的判断[^1]。 ### 方法和技术原理 为了实现有效的多模态融合,通常采用以下几种主要的方法: - **早期融合**:在特征提取之前就对原始输入信号进行组合处理。这种方法的优点是可以充分利用各模态之间的互补特性;缺点是对噪声敏感度较高。 - **晚期融合**:先分别独立地分析各个单个模态得到初步结论后再做最终决定。这种方式相对稳健但可能会损失一些潜在的相关性信息。 - **混合型融合**:结合上述两种策略,在某些阶段采取早融而在其他地方则实施晚融操作。这有助于平衡性能与鲁棒性的需求[^2]。 具体到算法层面,则涉及到诸如注意力机制(Attention Mechanism),它允许模型自动学习哪些部分应该被赋予更多权重从而优化整体表现;还有Transformer架构及其变体也被广泛应用于此领域之中[^3]。 ```python import torch.nn as nn class MultiModalFusion(nn.Module): def __init__(self, input_dim_1, input_dim_2, output_dim): super(MultiModalFusion, self).__init__() self.fc1 = nn.Linear(input_dim_1 + input_dim_2, 512) self.relu = nn.ReLU() self.dropout = nn.Dropout(p=0.5) self.out_layer = nn.Linear(512, output_dim) def forward(self, x1, x2): combined = torch.cat((x1, x2), dim=-1) # Early fusion example hidden = self.relu(self.fc1(combined)) dropped_hidden = self.dropout(hidden) out = self.out_layer(dropped_hidden) return out ``` 这段简单的PyTorch代码展示了如何构建一个多模态融合网络来处理两个不同维度的向量作为输入,并将其连接在一起形成一个新的表示用于后续分类或其他任务。 ### 应用场景 多模态融合有着极其广泛的应用范围,涵盖了自动驾驶汽车的安全导航系统设计,医疗影像诊断辅助工具开发,以及自然语言处理中的跨媒体检索服务改进等多个方面。特别是在提升机器翻译质量上也发挥了重要作用——通过对齐视觉内容(如图片说明)、听觉描述(语音片段),甚至触感反馈等多元化的表达方式来增强语义解析准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值