大模型情感分析的新范式:情感推理的多步方法构建更具同理心的对话助手

情感检测和推理是自然语言处理(NLP)领域中的重要研究方向。随着社交媒体和在线交流的普及,理解和分析文本中的情感信息变得尤为关键。情感检测不仅可以帮助企业更好地了解客户反馈,还可以在心理健康监测、教育、娱乐等多个领域发挥重要作用。传统的情感检测方法通常依赖于预定义的情感标签集,这种方法在处理复杂和多样化的情感表达时存在局限性。因此开发能够生成更细粒度情感标签和解释的模型具有重要意义。

8 月 10 日发表在arXiv的《Towards a Generative Approach for Emotion Detection and Reasoning》由Ankita Bhaumik和Tomek Strzalkowski撰写,更早发表在伦斯勒理工学院(Rensselaer Polytechnic Institute, RPI)。该论文提出了一种新的生成式方法,用于情感检测和情感推理。主要贡献和创新点包括:

  • 生成式情感检测方法:提出了一种将情感分析问题框架化为生成式问答任务的方法,通过生成相关背景知识来逐步回答情感检测问题。

  • 上下文生成的重要性:证明了在情感检测提示中加入背景信息的重要性,能够提高情感分析的准确性和解释性。

  • 细粒度情感标签和解释:引入了细粒度的情感标签和逐步推理过程,使得情感分析更加灵活和细致。

  • 评估和数据集更新:在两个流行的情感检测数据集上进行了评估,并发布了更新后的数据集,包含额外的情感标签及其解释。

研究团队中Ankita Bhaumik 是伦斯勒理工学院计算机科学的博士生。她的研究兴趣主要集中在自然语言处理(NLP)和安全可信的人工智能(AI)领域。目前,她的研究工作包括从文本和社交媒体内容中建模人类情感。她在多个领域发表了研究成果,包括情感检测、社交媒体分析和形式方法。

Tomek Strzalkowski 是伦斯勒理工学院的认知科学和计算机科学教授。他的研究兴趣涵盖了人类语言技术的广泛领域,包括计算语言学、社会语言学、社会行为计算、互动信息检索、问答系统、人机对话、严肃游戏、社交媒体分析、形式语义学和可逆语法。他曾参与多个由IARPA、DARPA、ARL、AFRL、NSF、欧盟委员会和NSERC资助的研究项目,并在IBM的Jeopardy!挑战赛中担任高级问答系统的研究工作。此外,他还在纽约州立大学奥尔巴尼分校担任计算机科学教授,并创立了信息学、逻辑学和安全研究所。

图1:来自ISEAR数据集的示例输入文本。我们的方法产生了一组开放式的情绪,以及对最终答案的情绪推理。

通过这篇论文,研究团队展示了生成式情感检测和推理方法的潜力,为情感分析领域带来了新的视角和方法。

研究背景

情感检测的传统方法

情感检测一直是自然语言处理(NLP)领域的重要研究课题。传统的情感检测系统主要依赖于情感词典和机器学习算法。这些系统通过预定义的情感词汇表或训练分类器来预测输入文本的情感标签。然而这些方法存在显著的局限性。

依赖预定义词典:传统方法通常依赖于预定义的情感词典,这些词典可能无法涵盖所有可能的情感表达,尤其是在面对新兴的或领域特定的词汇时。

缺乏上下文理解:这些系统往往忽略了文本的上下文信息,无法准确捕捉复杂的情感表达。例如,同一个词在不同的上下文中可能表达不同的情感。

静态模型:传统情感检测模型通常是静态的,难以适应不断变化的语言和情感表达方式。

固定情感标签集的不足

大多数传统情感检测系统使用固定的情感标签集,如Ekman的六种基本情感(快乐、悲伤、愤怒、恐惧、厌恶和惊讶)。这种方法存在以下不足。

  1. 情感标签的局限性:固定的情感标签集过于简单,无法捕捉细腻的情感差异。例如,“悲伤”可能包含“失望”、“沮丧”、“后悔”等多种情感,但传统系统无法区分这些细微差别。

  2. 缺乏灵活性:固定标签集限制了模型在不同应用场景中的适用性。在某些特定领域或文化背景下,可能需要更丰富的情感标签来准确反映用户的情感状态。

大模型(LLMs)的发展

近年来,预训练的大型语言模型(LLMs)如GPT-3、OPT、T5和ChatGPT在自然语言处理任务中取得了显著进展。这些模型通过在大规模文本数据上进行预训练,能够生成高质量的文本,并在各种任务中表现出色,包括文本生成、翻译、问答和情感分析等。

  • 高质量文本生成:LLMs能够生成连贯且富有逻辑的文本,适用于多种自然语言处理任务。

  • 多任务学习:通过预训练和微调,LLMs可以在多个任务上表现出色,展示了强大的泛化能力。

  • 上下文理解:LLMs能够捕捉文本的上下文信息,从而更准确地理解和生成文本。

链式思维提示技术是近年来引入的一种新方法,通过逐步推理的方式来解决复杂的推理任务。这种方法在常识推理、算术和科学问答任务中取得了显著效果。

  • 逐步推理:CoT提示技术通过引导模型逐步推理,能够更好地解决复杂问题。例如,在情感检测任务中,模型可以逐步分析文本的情感线索,最终生成准确的情感标签。

  • 提高模型性能:研究表明,使用CoT提示技术可以显著提高LLMs在推理任务中的性能,使其在处理复杂任务时更加可靠。

  • 应用广泛:CoT提示技术不仅适用于情感检测,还可以应用于其他需要逐步推理的任务,如数学问题求解和科学推理。

通过结合LLMs的强大能力和CoT提示技术,研究人员能够开发出更灵活、更准确的情感检测和推理系统,克服传统方法的局限性,提供更细腻的情感分析结果。

生成式情感检测和推理方法

方法概述

论文提出了一种新的生成式方法来进行情感检测和推理,将情感分析问题框架化为生成式问答任务。传统的情感检测方法通常依赖于固定的情感标签集,而这种生成式方法通过生成相关背景知识和逐步推理来回答情感检测问题,从而提供更灵活和细腻的情感分析。

图2:我们生成方法的总体架构:(1)固定标签集上的情感标签(2)开放式情感词集(3)top-k解释。

两步方法论:背景信息生成和逐步推理

该方法分为两个主要步骤:

  1. 背景信息生成:首先,模型生成必要的背景信息或语料库特定的上下文,以帮助回答情感检测问题。

  2. 逐步推理:然后,利用生成的背景信息,模型进行逐步推理,最终生成情感标签和解释。

背景信息生成

背景信息生成步骤使用少样本提示技术,从大语言模型(LLM)中提取相关背景信息。少样本提示通过提供少量手写示例,向模型提供关于应用领域和数据集构建过程的背景知识。例如,对于ISEAR数据集,提示包括报告人们在特定情境下经历的情感,而#Emotional Tweets数据集则收集带有情感标签的推文。

示例和具体实现

提示(Prompt)由指令和k对输入及其相关背景信息组成。具体实现如下:

Prompt§ =

Input :

Context :

Input :

Context :

Input : <ik+1>

Context :

生成的背景信息集C = {c1, c2…, cn},用于每个输入文本。例如:

Input: I did not do the homework that the teacher had asked us to do. I was scolded immediately.

Context: This situation suggests that the person is a student who did not complete their homework as instructed by their teacher.

情感生成

在情感生成步骤中,利用生成的背景信息作为提示的一部分,为输入文本提供额外的背景知识。提示Q用于在固定标签集E上进行情感检测或生成开放式情感标签和逐步推理。

Prompt(Q) =

Q: Given the context, what emotions does the author of the input text feel and why?

Give me the reason followed by the final emotion label.

Context: {context}

Input: {input}

A: Let’s think step-by-step.

生成开放式情感标签和解释

通过提示Q,模型生成每个上下文ci ∈ C的情感标签和解释。最终,使用软多数投票技术选择最一致的情感标签和解释。生成的解释不仅提供了情感标签,还包括逐步推理过程,使情感分析更加透明和可解释。

这种生成式方法通过结合背景信息生成和逐步推理,克服了传统情感检测方法的局限性,提供了更灵活和细腻的情感分析结果。

实验与评估

数据集选择

为了评估生成式情感检测和推理方法的有效性,研究团队选择了两个广泛使用的情感检测数据集:ISEAR和#Emotional Tweets。

ISEAR(International Survey on Emotion Antecedents and Reactions)数据集包含7,665条文本,这些文本记录了参与者在经历愤怒、厌恶、恐惧、快乐、悲伤、羞耻和内疚等情感时的情境描述。该数据集为情感检测任务提供了丰富的情感标签和背景信息。

#Emotional Tweets数据集包含21,051条推文,这些推文是通过情感标签(如愤怒、厌恶、恐惧、快乐、悲伤和惊讶)作为标签收集的。该数据集反映了社交媒体上的情感表达,具有较高的实际应用价值。

为了提高情感检测的细腻度和准确性,研究团队对这两个数据集进行了更新,加入了细粒度的情感标签和情感推理解释。例如,将“悲伤”进一步细分为“难过”、“失望”和“后悔”等子标签。这种细粒度的情感标签能够更准确地反映文本中的情感表达,提供更丰富的情感分析结果。

图3:ISEAR数据集中前三名生成的情感推理的人类评估。图表显示了问题1-5的分数分布。

图4:gold ISEAR数据集中情感词的分布与使用我们的方法生成的情感标签的比较。

图5:ISEAR的示例说明了不同的上下文如何导致不同的CoT情感推理。

实验设置

实验中使用了两种预训练的大型语言模型(LLMs):Flan-T5 base(250M参数)和Flan-T5 xxl(11B参数)。这些模型在大规模文本数据上进行了预训练,具有强大的文本生成和理解能力。

实验步骤和参数设置

实验步骤如下:

  1. 背景信息生成:使用少样本提示技术,从LLM中提取相关背景信息。提示包括少量手写示例,提供关于应用领域和数据集构建过程的背景知识。

  2. 情感生成:利用生成的背景信息,模型进行逐步推理,生成情感标签和解释。提示Q用于在固定标签集E上进行情感检测或生成开放式情感标签和逐步推理。

具体参数设置如下:

  • 少样本提示:提示由k=5个手写示例组成。

  • 核采样:背景信息生成和情感生成均使用核采样技术,p值设置为0.9,每个输入文本生成n=10个上下文。

  • 最大生成长度:每步生成的最大令牌数为60。

评估结果

研究团队对固定情感标签集上的零样本情感检测任务进行了评估。尽管论文方法的创新贡献是生成开放式情感标签和解释,但这些评估指标表明,该方法在所有三种情感分析任务中都有效。

为了评估生成的情感推理的质量,研究团队手动评估了每个数据集的100个样本,检查生成的前三个情感标签和解释的质量。评估标准包括标签是否正确代表输入文本表达的情感、标签是否比金标准情感标签更合适、情感推理是否正确、推理是否语法正确、推理是否完整。

通过实验展示了上下文生成步骤的重要性,不同的上下文会导致不同的情感推理和标签。在没有上下文的情况下生成情感推理,结果显示推理质量显著下降。这表明上下文生成在情感分析任务中起到了关键作用,能够显著提高情感检测和推理的准确性和细腻度。

通过这些实验和评估,研究团队验证了生成式情感检测和推理方法的有效性和优势,为情感分析领域提供了新的思路和方法。

讨论与分析

生成式方法的优势

生成式情感检测方法的一个显著优势在于其灵活性。传统的情感检测系统通常依赖于固定的情感标签集,这限制了它们在不同应用场景中的适用性。相比之下,生成式方法能够生成开放式的情感标签,捕捉到更细腻和多样的情感表达。例如,传统系统可能只会将“悲伤”作为一个标签,而生成式方法可以进一步细分为“难过”、“失望”、“后悔”等子标签。这种灵活性使得情感分析更加准确和细致,能够更好地反映文本中的情感细节。

上下文生成在情感分析中起到了关键作用。通过生成相关的背景信息,模型能够更好地理解输入文本的情境,从而进行更准确的情感检测和推理。实验结果表明,不同的上下文会导致不同的情感推理和标签,这进一步证明了上下文生成的重要性。在没有上下文的情况下,情感推理的质量显著下降,说明上下文信息对于捕捉文本中的情感线索至关重要。

错误分析

在情感推理过程中,模型可能会出现一些错误。常见的错误类型及其原因包括:

  • 无法捕捉多重子句:模型在处理包含多个子句的复杂句子时,可能无法准确捕捉每个子句的情感信息,导致情感推理错误。

  • 缺乏解释:有时模型仅生成情感标签而没有提供相应的解释,这使得情感推理不完整。

  • 情感词混淆:输入文本中包含其他情感词时,模型可能会被混淆,生成错误的情感标签。

改进建议

为了改进情感推理的准确性,可以考虑以下建议:

  1. 增强上下文理解:通过改进上下文生成技术,使模型能够更好地理解复杂句子的情境和情感线索。

  2. 提供完整解释:确保模型在生成情感标签的同时,提供完整的情感推理解释,以提高情感分析的透明度和可解释性。

  3. 处理情感词混淆:开发更先进的情感词识别和消歧技术,减少情感词混淆带来的错误。

与现有方法的比较

传统情感检测模型通常依赖于预定义的情感词典和固定的情感标签集,缺乏灵活性和上下文理解能力。相比之下,生成式方法通过生成开放式情感标签和相关背景信息,提供了更灵活和细腻的情感分析。这种方法不仅能够捕捉到更多样的情感表达,还能通过逐步推理提供情感标签的解释,使情感分析更加透明和可解释。

最新的零样本情感检测方法通常依赖于文本蕴涵模型,通过计算每个情感标签的文本蕴涵分数来进行情感检测。虽然这些方法在一定程度上提高了情感检测的准确性,但仍然受到固定标签集的限制。生成式方法通过生成开放式情感标签和逐步推理,克服了这些限制,提供了更灵活和准确的情感分析。此外,生成式方法还能够生成情感推理解释,进一步提高了情感分析的透明度和可解释性。

通过以上讨论和分析,可以看出生成式情感检测和推理方法在灵活性、准确性和可解释性方面具有显著优势,为情感分析领域提供了新的思路和方法。

未来工作与展望

多步情感链式思维推理

当前的研究主要集中在单步情感推理上,即通过生成背景信息和逐步推理来生成情感标签和解释。然而在实际应用中,情感分析往往需要处理更长的文本和复杂的对话。未来的研究可以探索多步情感链式思维推理,即在更长的文本和对话中进行多步推理,以捕捉更复杂的情感变化和互动。

这种多步推理方法可以帮助模型更好地理解文本的上下文和情感线索,从而生成更准确和细腻的情感标签。例如,在一段对话中,情感可能会随着对话的进展而变化,通过多步推理,模型可以捕捉到这些变化并生成相应的情感标签和解释。

构建更具人类同理心的对话助手

多步情感链式思维推理的另一个重要应用是构建更具人类同理心的对话助手。当前的对话系统往往缺乏对用户情感的深刻理解,难以提供真正有同理心的回应。通过引入多步情感推理,对话助手可以更好地理解用户的情感状态,并根据情感变化提供更贴心和个性化的回应。

例如,在心理健康支持、客户服务和教育等领域,一个能够理解和回应用户情感的对话助手可以显著提高用户体验和满意度。未来的研究可以探索如何将多步情感推理技术应用于这些领域,构建更智能和人性化的对话系统。

潜在应用领域

生成式情感检测和推理方法具有广泛的应用前景,可以应用于多个领域。

心理健康支持:在心理健康支持中,情感分析可以帮助识别用户的情感状态,提供及时的心理干预和支持。通过多步情感推理,可以更准确地捕捉用户的情感变化,提供更有效的心理健康服务。

客户服务:在客户服务中,情感分析可以帮助识别客户的情感状态,提供更个性化和贴心的服务。通过理解客户的情感需求,企业可以提高客户满意度和忠诚度。

教育:在教育领域,情感分析可以帮助教师了解学生的情感状态,提供更有针对性的教学支持。通过多步情感推理,教师可以更好地理解学生的情感变化,调整教学策略,提高教学效果。

社交媒体分析:在社交媒体分析中,情感分析可以帮助识别用户的情感趋势,提供有价值的市场洞察。通过多步情感推理,可以更准确地捕捉用户的情感变化,提供更深入的分析结果。

进一步研究的方向

未来的研究可以在以下几个方向上进一步探索。

多步情感推理模型的优化:开发更高效和准确的多步情感推理模型,提高情感分析的性能和可靠性。

跨领域应用:探索生成式情感检测和推理方法在不同领域中的应用,验证其在实际场景中的有效性和适用性。

情感推理数据集的扩展:构建和发布更多包含情感推理解释的数据集,促进情感分析研究的发展。

伦理和隐私问题:研究情感分析中的伦理和隐私问题,确保情感分析技术的安全和合规。

通过这些未来工作和研究方向,生成式情感检测和推理方法有望在多个领域中发挥重要作用,推动情感分析技术的发展和应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值