Y-Mol:一种基于大语言模型 LLM 的药物研发新范式

导读

Y-Mol 是第一个利用多尺度生物医学知识构建信息丰富指令数据集的 LLM 范式,用于增强药物研发能力。

近年来,大型语言模型 (LLM) 在各个领域都取得了巨大成功,但其在药物研发领域的应用仍然受限。作者认为,主要障碍在于缺乏专用的数据集。为了克服这一限制,作者提出了 Y-Mol,这是一个多尺度生物医学知识引导的 LLM,旨在增强药物研发的潜力。

Y-Mol 基于 LLaMA2 模型构建,并在从各种生物医学知识来源构建的大型文本语料库和指令集上进行了微调。该模型的构建考虑了药物研发领域的三个主要挑战:

(i) 获取与药物相关的数据成本高昂,且药物研发涉及多个学科领域。 为了解决数据获取成本高的问题,Y-Mol 利用 PubMed 上公开发表的生物医学文献构建了一个大型文本语料库。该语料库涵盖了与药物研发相关的多个领域,例如生物信息学、计算化学和结构生物学。

(ii) 生物医学实体之间的交互数据,例如药物扰动的基因表达和蛋白质结合活性,需要精细的领域知识才能进行标注。 为此,作者利用一个大型生物医学知识图谱构建了生物医学交互指令。这些指令使用精心设计的提示来模拟生物医学实体之间的复杂交互以及药物扰动的表达数据。

(iii) 与自然语言处理领域不同,药物研发领域缺乏统一的标准范式。 针对这一挑战,Y-Mol 从现有的药物研发模型中提取专家知识,并将其整合到模型中,以增强不同药物相关信息表示的一致性。具体而言,作者设计了提示模板,并根据从小模型(例如 ADMET 预测模型和药物重定位模型)合成的数据构建了一组指令。

图 1:Y-Mol 提供了跨 24 个任务的药物研发大规模语料库和指令。

为了评估 Y-Mol 在药物研发中的有效性,作者设计了涵盖先导化合物发现、临床前和临床预测等各个阶段的任务。实验结果表明,Y-Mol 在各种药物研发任务上均取得了优异的性能,证明了构建指令数据集的价值,并展示了 Y-Mol 增强 LLM 对药物研发的理解和通用性的能力。

Y-Mol:用于药物开发的 LLM

Y-Mol 是一个基于 LLM 的药物开发训练和推理框架,它利用生物医学出版物进行预训练,并使用构建的指令进行微调,以完成药物发现、临床前和临床预测等下游任务。

Y-Mol 采用两阶段训练和推理范例。首先,它在生物医学出版物语料库上对 LLaMA2 进行自监督预训练,使其具备药物开发背景知识。然后,利用从药物相关领域知识和专家合成数据构建的指令对 LLaMA2 进行监督微调,从而增强其对药物开发流程中相互作用机制的理解能力。

图 2:Y-Mol 架构。 Y-Mol 构建了用于药物开发的 LLM 范例,该范例包括两个过程:(a) Y-Mol 的预训练 - 微调框架首先基于生物医学出版物对 LLaMA2 进行自监督预训练,然后使用构建的指令对 LLaMA2 进行微调;(b) Y-Mol 在微调后的 LLaMA2 上评估下游任务。

为了全面探索出版物中潜在的生物医学知识,研究人员从 PubMed 等在线出版商处提取并预处理了超过 3300 万篇出版物。他们提取了可见的摘要和简要介绍作为生物医学文本,并使用命名实体识别 (NER) 工具和 PubTator 对药物实体进行标准化和 SMILES 序列替换。

为了使 Y-Mol 适用于药物开发,研究人员设计了多种类型的指令来对其进行微调。这些指令来自分子 - 文本对、知识图谱和专家合成数据。

  • 来自分子 - 文本对的指令: 从 DrugBank 等药物数据库中提取分子 - 文本对,并将其构建为问题和答案形式的指令,以促进 Y-Mol 对药物的理解。

  • 来自知识图谱的指令: 利用来自生物医学知识图谱的事实,将其转换为自然语言描述,并结合上下文信息构建成问题和答案对,以提高 Y-Mol 在药物相关任务上的性能。

  • 来自专家合成数据的指令: 利用现有计算模型的输入和输出,构建包含药物性质和领域知识的信息性指令,并将这些知识蒸馏到 Y-Mol 中。

图 3:生物医学语料库和指令的构建过程: (A) 从药物发现领域的生物医学出版物中收集大规模生物医学语料库。(B) 从连贯的事实中构建指令,以增强药物相关相互作用的上下文。© 从现有小型模型的专家合成数据构建指令,以将药物的知识范围提炼到 Y-Mol 中。

在监督微调阶段,将生成的指令作为监督输入输入到 Y-Mol 中,以微调 LLM。

为了验证 Y-Mol 在药物开发中的有效性,研究人员设计了先导化合物发现、临床前和临床预测等方面的各种任务,包括虚拟筛选、药物设计、性质预测和药物相互作用预测。

图 4:Y-Mol 基于设计的指令进行监督微调的过程。

研究人员使用了多个数据集来评估 Y-Mol,包括用于 DTI 预测的 DrugBank 和 DrugCentral,用于 DDI 预测的 Ryu 数据集和 Deng 数据集。他们采用 ROC-AUC 评估 DTI 和 DDI 预测性能,使用 R 方评估性质预测性能,并使用有效性、唯一性、新颖性和多样性等指标评估药物设计性能。

图 5:Y-Mol 在预训练和监督微调阶段跨不同任务的数据分布。

实验结果表明,与基线方法 LLaMA2-7b 相比,Y-Mol 在 DTI 和 DDI 预测、性质预测以及药物设计方面均取得了优异的性能。

任务数据集Y-MolLLaMA2
DTI 预测DrugBank0.81990.7697
Drugcentral0.83310.7918
DDI 预测Ryu 数据集0.65230.5031
Deng 数据集0.62190.4973

表 1:DTI 和 DDI 预测在四个数据集上的性能比较 (ROC-AUC)。

单目标有效性唯一性新颖性多样性
BBB10.9990.7510.921
LogP0.9970.9990.390.913
QED10.20.460.879
SAs0.9980.9990.5020.917
Is Valid10.1650.680.821
多目标有效性唯一性新颖性多样性
IsValid, BBB, QED0.9970.9990.8150.913
IsValid, BBB, QED, SAs10.9990.8210.911
IsValid, LogP0.9990.9990.5220.911
IsValid, BBB0.9930.9990.8720.917
IsValid, QED0.9980.9940.6640.913

表 2:Y-Mol 在药物设计方面的性能。

Y-Mol: 提升药物发现效率

  • 与现有模型相比,Y-Mol 在药物靶点相互作用预测和药物设计方面表现更出色。

  • Y-Mol 能够准确预测分子的化学和物理特性,并能有效识别潜在的药物相互作用。

  • 案例研究进一步证明了 Y-Mol 在解决药物研发实际问题方面的有效性。

Y-Mol 模型在药物靶点相互作用预测方面优于 LLaMA2,在 Drug-Bank 和 DrugCentral 数据集上的 AUC 分数分别提高了 5.02% 和 4.13%(见表 1)。结果表明,Y-Mol 通过多尺度数据源对生物医学知识进行监督调优,对药物靶点相互作用预测有积极的促进作用。

在药物设计方面,Y-Mol 也展现出优异的性能(见表 2)。与之形成鲜明对比的是,LLaMA2-7b 模型无法生成有效的分子,表明其领域适应能力较差。如方法部分所述,从专家模型构建的指令可以为药物设计引入多种限制条件。Y-Mol 在多目标(如 LogP 和 QED)药物设计任务中也表现良好。

在这里插入图片描述

图 7 显示了 Y-Mol 在预测 12 种理化性质方面的性能。Y-Mol 在所有任务上的 R² 分数均优于 LLaMA2,表明 Y-Mol 在预测化学和物理特性方面具有更强的泛化能力。

在预测潜在药物相互作用方面,Y-Mol 也取得了优异的成绩(见表 1)。这表明,Y-Mol 学习生物医学知识有利于临床预测。

图 6 和图 8 中的案例研究进一步评估了 Y-Mol 的性能。对于 Dronedarone 和 Abametapir 之间的相互作用,Y-Mol 发现 Abametapir 抑制了代谢 Dronedarone 的靶点 CYP2C9,从而导致 Dronedarone 与 Abametapir 联用时血清浓度升高。此外,Y-Mol 还准确预测了给定分子的 LogD7.4 值。这些案例表明,Y-Mol 能够有效解决药物研发中的实际问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值