AI与药学|当AI遇上老药新用,DrugReAlign—基于大模型的多源提示药物重定位框架

药物研发是一个漫长而昂贵的过程,动辄十年,耗资数十亿美金,成功率更是令人唏嘘。 因此,“老药新用”——药物重定位 (drug repurposing) 成为了一项极具吸引力的策略。它就像在已有的药柜里寻宝,挖掘出已被批准上市或处于临床试验阶段的药物,用于治疗新的疾病,大大缩短了研发周期,降低了成本和风险。(关注公众号“赛文AI药学”,获取更多AI与药学的内容)

传统的药物重定位方法高度依赖于研究人员对海量文献和临床数据的细致分析,需要跨学科合作,效率相对较低。近年来,随着生物信息学和深度学习的快速发展,计算方法在药物重定位领域取得了显著进展,能够自动提取药物和靶点的复杂特征,提高预测的准确性和可解释性。

然而,这些基于深度学习的方法通常依赖于特定的数据集进行训练,这在面对浩如烟海的药物和靶点时,其预测的准确性和范围都受到了限制。特别是对于那些参数规模和数据量都有限的模型来说,很难在如此广阔的分子空间中实现良好的泛化。

现在,大语言模型(LLMs)的出现,为药物重定位带来了新的曙光! 像ChatGPT这样的LLMs,通过在庞大的人类知识库上进行训练,展现出了在问答、翻译、情感分析等任务上的卓越能力。与传统的规则或知识库模型不同,LLMs能够自主学习语言规则和模式,深入理解潜在的知识。这种跨学科的学习能力预示着科学研究领域,包括药物发现,将迎来一场潜在的变革。

最近发表在 BMC Biology 上的题为 "DrugReAlign: a multisource prompt framework for drug repurposing based on large language models" 的研究,就展示了如何利用LLMs的强大能力,结合一种巧妙的“组合拳”——多源提示 (multi-source prompting) 技术,来高效挖掘现有药物的潜力。

DrugReAlign框架的核心思想,就是充分利用LLMs从海量人类知识中学习到的关于靶点和药物的通用知识,从而克服传统方法中数据可获得性的限制。 为了进一步提升LLMs在药物重定位任务中的性能,研究人员并没有止步于此,而是从数据库中收集了靶点摘要 (target summaries)靶点-药物空间相互作用数据 (target-drug space interaction data) 作为多源提示 (multi-source prompts)

让我们来具体看看这个框架是如何运作的:

  • 构建多源提示: 研究人员从RCSB数据库中获取了靶点蛋白质的结构描述信息,包括PDB ID、名称、基因归属等。更重要的是,他们从PDB文件中提取了小分子配体-靶点复合物的结合口袋信息,包括原子坐标和空间相互作用数据。利用口袋分析工具,他们识别了关键特征,如疏水性和氢键。这些来自不同来源的信息被整合在一起,形成了丰富的提示信息。

  • 基于LLMs和多源提示筛选潜在药物: 将这些多源提示信息输入到不同的LLMs模型中(包括GPT-3.5、GPT-4、NewBing和medllama3-v20),让它们预测与目标靶点可能发生相互作用的潜在或实验性药物。

  • 验证预测结果: 研究人员利用分子对接技术(AutoDock Vina)对LLMs预测的药物进行了大量的实验验证,通过计算药物与靶点之间的结合自由能来评估预测的准确性。

  • 结果分析和决策支持: DrugReAlign框架还能生成详细的分析报告,包括药物排名、分子对接结果以及交互式查询功能,提升了过程的透明度和可靠性。

实验结果令人振奋! 研究表明,LLMs在药物重定位任务中展现出了良好的性能。特别是GPT-4模型,在预测准确率方面表现最佳。更重要的是,研究发现LLMs对靶点数据的分析准确性与药物重定位的预测结果质量之间存在直接的关联。这意味着,通过优化提示信息的质量和方式,可以进一步提升LLMs在药物重定位中的表现。

为了验证DrugReAlign的有效性,研究人员还进行了消融实验 (ablation study),对比了在提示信息中包含和不包含靶点-药物空间相互作用数据时,LLMs的预测性能。结果显示,对于GPT-4和NewBing模型,包含空间相互作用信息的提示能够显著提高预测的准确性。

此外,研究人员还将LLMs的预测结果与传统的深度学习模型(DrugBan和TransformerCPI2.0)进行了比较。实验结果表明,LLMs在药物重定位任务中显著优于传统的深度学习模型,这主要归功于LLMs庞大的训练数据和模型参数,使其具有更强的泛化能力。

案例分析进一步印证了DrugReAlign的潜力。 研究人员选择了PARP1作为案例进行分析,并利用DrugReAlign框架预测了潜在的重定位药物Midostaurin和Dasatinib。通过分子对接和分子动力学模拟,他们发现这两种药物都能够与PARP1形成稳定的相互作用,为癌症治疗提供了新的思路。

总而言之,这项研究的主要贡献在于:

  • 提出了一个基于LLMs和多源提示的药物重定位框架DrugReAlign,旨在高效挖掘现有药物的全部潜力。

  • 通过将小分子配体的空间相互作用信息融入提示中,显著提升了LLMs在药物重定位任务中的性能。

  • 揭示了LLMs对靶点数据的解读与药物重定位结果之间的强相关性,为进一步提升LLM性能提供了方向。

这项研究预示着药物重定位领域可能迎来一个全新的范式。通过巧妙地结合LLMs的强大语言理解能力和多源提示的精准引导,DrugReAlign有望加速新药发现的进程,为患者带来福音。

关键词: 药物重定位,大语言模型,药物-靶点相互作用,分子对接、人工智能、大模型、AI药学

往期内容荐读:

数智药学的崛起:人工智能赋能药学新未来

数智药师:AI时代药学服务的引领者

智能决策助力药物安全:大模型在临床处方审核中的突破

数字人技术在药学服务中的应用

药师必备:掌握AI,引领药学服务新时代

LEADER - 大模型蒸馏的药物推荐模型

李新刚:《医院药学的创新引擎:ChatGPT的应用与思考》

ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用

评估大语言模型在药物基因组学问答任务中的表现:PGxQA

DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测

生成式AI:药学科普的新引擎

诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!

AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践

人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究

生成式人工智能在中医药学教育中的应用与挑战

PharmacyGPT: AI赋能精准ICU药物治疗

数智药学:信息药师向AI药师的进化

AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁

AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误

AI时代下的家庭药师

AI与药学:用药咨询场景的检索增强AI大模型

AI与药学:生成式人工智能如何帮助构建患者药品说明书?

AI与药学:ChatGPT在抗感染治疗中的应用与挑战

AI与药学:大语言模型赋能药物推荐

CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究

AI与药学|DAPSNet:基于双重注意力机制和患者相似性的药物推荐模型

AI与药学| Nature Medicine:大模型MEDIC显著降低药店用药指导错误

AI与药学:机器学习预测早期结肠癌中奥沙利铂的疗效

AI与药学:基于大模型的多智能体药物不良事件提取系统—MALADE

FastRx:基于 Fastformer 和记忆增强图神经网络的个性化用药推荐模型

AI与药学|基于知识图谱增强的泛癌症问答大模型框架

AI与药学 | Med-Pal:轻量级大型语言模型在药物咨询领域的应用

欢迎关注公众号“赛文AI药学”!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明哲AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值