故事是这样的。
最近国内各家AI产品不是卷麻了吗。
就两大领域kuku卷,之前是AI搜索,这周是AI绘图。
AI搜索这一波,国内有Kimi上线复杂推理的探索版,海外的Perplexity除了高级推理还能调用各家大模型,GPT的搜索最近更新的动静也不小,要强干Google的地位。
我一直很好奇,这些厂子,还能把AI搜索完成什么花样。
然后非常巧合的是,昨晚李子柒不是复播了吗。
我的所有群,不知道怎么滴,就变成了李子柒讨论群。
但是不怕你们笑话,我作为一个做自媒体前,几乎不看八卦、不看热搜、不看任何我不感兴趣的事的人。
我之前只听过李子柒这个名字。
但是我真的不知道她为啥火,又为啥2021年以后停播。
那现在作为一个半媒体人,去挖掘任何热点,都是必备功课,没有之一。
于是我就习惯性的打开kimi、秘塔、Perplexity一起三箭齐发,去搜了一个问题:
“李子柒为啥当初退网?”
当然这个问题的答案,在这篇文章里面不重要,不过以防又跟我一样两耳不闻窗外事的人,我还是贴一下答案。
大概的回答是:与MCN公司的纠纷导致退网。
kimi和Perplexity也差不多。
不过李子柒不是重点,重点是AI搜索产品本身。
尤其是秘塔AI搜索。
这次搜索,我发现秘塔的界面,居然多了一个有趣的变化。
就是在你提出的问题“李子柒当初为啥退网?”的旁边,多了一个加号,点击以后,显示的是“收藏到专题”。
作为一个前用户体验设计师,我对界面UI太敏感了,我可以百分百保证,之前是没有这个玩意的。
这交互,藏得还挺深。
我就试了一下这个加号是个什么玩意。
点开以后,发现这个新功能有点像搜索结果的收藏夹。可以把AI联网搜索后总结生成的内容,分类收藏到一个专题里,同时秘塔主页的左边,也多了一个“专题”的栏目。
还是刚才那个李子柒的问题。
点开问题旁边的“+”,就可以创建专题。比如我建了一个叫“李子柒”的。
有趣的是,这个功能,除了可以收藏秘塔生成的回答内容,还可以收藏回答里秘塔查到的信息源。反正就是只要你能看到那个“+”,啥都能收藏。
左侧功能栏目里,有一个“专题”的入口,点开就能找到你的专题库了。也可以先在专题功能这儿的界面建好专题,要收藏的时候点加号选择就行。
新功能研究了半天,我才明白,这回秘塔做了一个很有趣的事:
他们做了一个知识库。
是不是听着好像很普通的样子?
但是不要忘了,现在市面上能看到的RAG知识库的本质,就是AI搜索,只不过是限定了范围的AI搜索。
这个范围,就是你自己收集的乱七八糟的文件、网址、知识等等。
但是不管你里面塞了什么东西,它最后本质上还是得用AI搜索。
而秘塔是啥?就是AI搜索的扛把子。
只不过,大家一直对它的印象,是公域AI搜索。
那现在,秘塔来做知识库,才是这最有趣的神之一手。有点妙啊。
其实秘塔在很早以前,就可以限定范围和渠道,做特定范围的搜索了。能搜全网、文库、学术、播客等等。
那现在,知识库,作为一个渠道,放在这个地方,真的有点水到渠成的意思。
而且可以把在秘塔上搜索到的任何内容,直接收录进专题,作为知识库的一员。
这个自循环,也非常的好玩。
我直接做几个case,给大家看看这个东西玩起来,是多么的有趣。
继续前面搜李子柒的。作为一个对她的了解停留在名字的人,想搞明白她这一连串从火到停再到复播的复杂经历,就很适合用秘塔来干。
以前要梳理这样的人物经历,我得先联网搜索,再把查到的信息和文档,复制粘贴到我的知识库去,之后再复盘整理成学习资料。。。。(这么一理,才发现之前整理内容有够折腾= =)
现在就很简单,对着AI搜索问就完事。
比如李子柒是什么时间怎么火的、“李子柒为什么停更”、“为什么突然回归”、“李子柒都有哪些产品”、“李子柒这次回归后发的内容跟之前有什么不同”、“李子柒现在还火吗”……
我直接想到什么问什么,秘塔查到我满意的内容,我就点个收藏,它就会把回答结果以“文章”的形式保存在专题库里。
这些文章,点开就是刚才秘塔联网搜索后,回答结果的页面。
这个专题,其实就成了我筛选过的,非常棒的一个知识库。
因为坦率的讲,AI在公域去做搜索,有时候也还是需要抽下卡的,并不是每次的回答,都很棒。
而现在我已经提前收录过了很多的优质的信息。
之后哪天我要是再需要查找这些“李子柒”相关的事,可以不用再重复联网搜索,直接去这个专题里面的搜索栏,或者在首页的搜索渠道里选这个专题,就可以调取之前查到的结果。
比如我在专题的搜索栏问:
在专题内搜索的时候,秘塔不会联网。它读懂问题后会进行“知识搜索”,这一步的信息来源就仅限于这个专题,就跟个人的知识库RAG一样。
别的不说,信息源都是自己筛选过的,足够干净,足够可控。
最后专题内搜索的回答结果,也不错。思维导图、人物信息整理啥的秘塔原本就有的功能,一个也不少。
引用的信息源具体也标得明明白白。点击回答里小书本一样的icon或者“LIB”的标注,就能看到参考了专题收藏里的哪一篇回答。
整个体验就,很丝滑。
以后做这种互联网信息的整理,我再也不用自己手动一个个去复制粘贴、下载文档再上传文档了,知识库搭建难度立减九十九。
而且,除了保存和调用联网搜索的结果,你还可以自己补充上传特定的知识内容。这一个就和你熟悉的知识库流程差不多了。
在专题内页,右边有个“上传文件”的功能。上传word、pdf、网页啥的都行。
这样在这个专题里搜索的时候,秘塔就能把这些上传文档的内容,也作为信息来源了。
你就想想,以后做工作研究、个人学习、专业知识库建构……都可以在一个产品里,既能用到AI公域搜索,又能用到自己的个人知识库问答。
比如建一个“学习资料”知识库,里面摆满了各种你自己上传的以及从秘塔AI搜索问答那的收藏文章。
下次直接想找什么资料,直接对着这个专题问答,你就能体会体会,什么叫飞一般的感觉。
然后我又冒出来个想法,是关于热梗的。
因为最近我实在是忙得飞起,一大堆推不开的活动和商务,18G冲浪选手本人直接给干成2G了。群里最近聊的抽象梗,我是一听一个懵逼。已经快跟不上年轻人的步伐了。
所以正好我就试试,在秘塔上整个“热门抽象梗”知识库,专门收集这些玩意。
在成为抽象之王的路上一路飞奔…
然后秘塔这个专题有一个非常有趣的点是,它是可以被分享的。
也就是说,这个知识库,是可以跟其他人共享的,甚至,可以共同编辑。
你和你的同学或者朋友,可以共用这个知识库,这个在协同上,就很酷。
但是你以为这就完了吗。
他们甚至,给这个专题页,开放了API接口。
这就比较有趣了,可以去做一点套壳的小应用,直接给别人玩。
比如我就借助Claude,随手写了个代码,把我的“抽象梗”专题给封装成了一个前段页面。
一个热门梗解释器,自动就有了。。
好抽象,真的,抽象到家了。
不过这组“专题”的新功能体验下来,还是会有不少有待改进的地方。
比如现在能收藏的内容形式,也有一些局限,目前只能收藏秘塔“生成”的文字回答、AI搜索到的网页和文档。播客和图片啥的,还是不行。
并且,可能是秘塔担心搜索的逻辑套娃,一次搜索结果只能被收录在单个专题内,不能同时被多个专题收录。比如问“卡兹克和郭德纲是什么关系”的回答,收藏在【卡兹克专题】后,就不能在被【郭德纲专题】收藏了。只能二选一,这个设计确实有一丢丢难受了。
但整体而言,瑕不掩瑜。我依然觉得秘塔这次更新的方向,选得太对了。
秘塔,确实是一直奔着用户体验在走。
也算是第一个,在我看来把AI搜索,做成了完全体的产品。
甚至,它还有一种,想做新生代内容平台的概念。
AI生成内容,然后收藏内容,进入专题,最后还能对这个进行问答。
形成了真正的闭环。
秘塔,真是把AI搜索。
卷上了另一条路。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。