基础模型,特别是大型语言模型(LLMs)和多模态大型语言模型(MLLMs),使得Agent能够执行复杂任务。这些智能体利用**(M)LLMs处理和解释GUI**的能力,通过模拟人类交互(如点击和键入)自主执行用户指令。
GUI Agent领域中基础模型增长趋势的示意图
基于(M)LLM的GUI Agent 框架
Agent的目标是自动控制设备以完成任务。它们通常接收用户查询和设备UI状态作为输入,并提供一系列类似人类的操作来完成任务。GUI Agent的构建包括五个部分:GUI感知器、任务规划器、决策者、记忆检索器和执行器。
基于(M)LLM的GUI Agent的通用框架
- GUI代理的构建包括五个主要部分:
-
GUI感知器:准确解释用户输入和检测设备UI的变化。
-
任务规划器:将复杂任务分解为更小的步骤,并采用链式思维(CoT)方法。
-
决策者:基于当前环境和任务需求,提供控制设备的下一步操作。
-
记忆检索器:提供内部和外部记忆,帮助代理更有效地执行任务。
-
执行器:将代理的输出映射到相关环境中,实际控制设备。
基于(M)LLM的GUI Agent分类法
通过不同维度对现有工作进行分类,包括输入模态和学习模式的差异。通过这两个维度,包括了当前的主要工作,并帮助新研究者全面了解GUI代理。
- 不同输入模态的GUI代理:
-
基于LLM的GUI代理:由于多模态能力有限,早期的GUI代理通常需要一个GUI感知器将图形用户界面转换为基于文本的输入。例如,一些研究将屏幕转换为一系列对象描述,并应用基于变换器的方法进行动作映射。
-
基于MLLM的GUI代理:近期研究利用高级(M)LLMs的多模态能力来提高GUI理解和任务执行能力。一些工作专注于GUI理解,例如使用基于ViT的图像编码器-文本解码器架构,或者将UI屏幕封装成连贯的语言表示。
- 不同学习模式的GUI代理:
-
基于提示的GUI代理:提示是一种有效的方法,可以以最小的额外计算开销构建代理。鉴于GUI和任务的多样性,许多研究使用提示来创建GUI代理,采用链式思维(CoT)或反应式(ReAct)风格。例如,一些研究通过设计的动作定位技术将截图作为输入,生成动作描述并将其转换为可执行动作。
-
基于SFT(Supervised Fine-Tuning,监督微调)的GUI代理:微调允许LLM适应特定领域并更有效地执行定制任务。一些工作使用SFT让GUI代理使用新模态输入、学习特定流程或执行特殊任务。
基于(M)LLM的GUI Agent工业应用
介绍了基于(M)LLM的GUI代理的最新工业应用,这些应用具有重大的商业潜力。包括Google Assistant for Android、Apple Intelligence、New Bing、Microsoft Copilot、Anthropic Claude 3.5和AutoGLM等。
- Google Assistant for Android:
-
用户可以通过语音命令,如“Hey Google, start a run on Example App”,使用Google Assistant来启动应用、执行任务和访问内容。
-
App Actions通过内置意图(BIIs)增强了应用功能,允许用户通过语音查询来导航应用和访问特性。
- Apple Intelligence:
-
苹果在其设备上使用设备端和云端模型,拥有通用的基础模型和专门针对特定任务(如摘要和语调调整)的适配器模型。
-
评估表明,设备端模型的性能超过了或匹配了Mistral AI、Microsoft和Google的小型模型,而服务器模型超过了OpenAI的GPT-3并匹配了GPT-4。
- New Bing:
-
微软的搜索引擎旨在提供更直观、高效和全面的搜索体验。
-
利用尖端的人工智能和机器学习技术,New Bing超越了传统的关键词搜索,以理解用户查询背后的上下文和意图。
- Microsoft Copilot:
-
微软365应用中的一个AI工具,用于提高生产力,提供基于GPT的建议、任务自动化和内容生成。
-
它通过实时洞察增强工作流程、创造力和决策制定。
- Anthropic Claude 3.5:
- Claude 3.5的最新版本引入了一个突破性的能力:计算机使用,允许Claude像人类一样与计算机交互——查看屏幕、移动光标、点击按钮和键入文本。
- AutoGLM:
-
来自ChatGLM家族的一系列新工具,旨在通过手机和网络平台上的图形用户界面自主完成任务。
-
它的Android功能允许它自主理解用户指令,无需手动输入,使其能够处理诸如订购外卖、编辑评论、购物和总结文章等复杂任务。
- MagicOS 9.0 YOYO:
-
一个高级助手,具有四个主要功能:自然语言和视觉处理、用户行为和上下文学习、意图识别和决策制定以及应用的无缝集成。
-
它理解用户习惯,以自主完成请求,例如通过语音命令订购咖啡,通过导航应用和服务。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。