告别人工标注!大模型自产自销训练数据实现「自我迭代式进化」

研究探索小型大语言模型 (LLM) 如何通过生成、研究和回答自创的问答对,学习基于强化学习 (Reinforcement Learning) 的智能搜索 (Agentic Search),从而自主提升研究与推理能力。整个过程均可在单张 RTX 4090 上运行!

本项目基于 Unsloth’s Efficient GRPO code(https://unsloth.ai/blog/r1-reasoning)构建,并新增了函数调用与智能循环的支持。

🚀 主要特性

  • Llama-8B实现自我引导:Llama-8B 能够从文档中自主生成高质量的问答对,并训练自身以更高效地搜索语料库,解答这些自生成的问题。

  • 自主验证答案准确性:Llama-8B 评估自身答案的正确性,形成自我改进的反馈机制。

  • GRPO 强化学习:实施GRPO,进一步提升 Llama-8B 在研究、搜索和推理方面的能力。

  • 全自动化的开源工作流:从问题生成、答案研究、验证、嵌入创建到强化学习的每个环节,均依赖开源模型并可在本地完整运行。

📊 实验结果

img

经过 100 步 GRPO 训练(在单张 RTX 4090 GPU 上运行 1 小时)后,Llama-8B 在研究和回答阿波罗 13 号任务报告相关问题的能力显著提升。

在包含 68 个问题的验证集上,模型的准确率从 23% 提升至 53%,提高了一倍以上。

🔍 示例:自适应搜索优化

在训练初期,模型在使用搜索工具时常犯以下错误:

  • 误用搜索工具,调用格式不正确。
  • 不实际查询语料库,而是凭空编造答案。
  • 直接模拟搜索引擎,生成虚假的搜索结果并自行作答。

然而,随着训练的深入,模型逐步学会了更高效的推理和搜索方法。它开始生成格式正确的查询,基于部分检索结果优化搜索策略,并成功获取准确答案。

以下示例展示了模型经过训练后学到的自适应搜索行为。

示例问题

What was the reason for substituting the backup Command Module Pilot 3 days prior to the Apollo 13 flight?

Step-by-Step Search Process
Query : "Apollo 13 Command Module Pilot substitution"

Outcome: Retrieved operational support details, but no explanation for the substitution.
Agent's Action: Recognized missing information → Refined query.
Query : "Apollo 13 Command Module Pilot substitution reason"

Outcome: Retrieved general mission anomaly details, but still no direct answer.
Agent's Action: Increased query specificity.
Query : "Apollo 13 John 'Jack' Swigert substitution"

Outcome: Found general mission reports, but still lacked a clear reason for substitution.
Agent's Action: Hypothesized illness might be a factor → Refined query accordingly.
Query : "Apollo 13 Jack Swigert illness substitution"

Outcome: Retrieved the exact explanation: "Several days prior to launch, the backup Lunar Module Pilot became sick with measles. Examinations of the prime crew indicated that the Command Module Pilot was not immune to the disease; therefore, the backup Command Module Pilot was substituted.

此示例展示了 Llama 如何通过多轮搜索来找到问题的答案。

此项目的创新在于增加函数调用和代理反馈循环后,实现了使用大模型监督小模型学习,减少了人参与的程度,节省了大量的时间。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值